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Foreword

Today’s world is one of abundant data. The generation of high-dimensional biomedical datasets, involving single-cell 
profiling, high-content imaging, and beyond, has become the new status quo. Meanwhile, population-scale collation 
of electronic healthcare records provides the opportunity to mine vast amounts of clinical data. In the face of this 
bounty of information, we collectively wonder how it is possible to understand everything the data are telling us. 
Enter artificial intelligence (AI). Therapeutic development crosses scientific boundaries, encompassing basic biology, 
chemical biology, and clinical care. It is particularly amenable to AI, which has the potential to integrate data from 
these different realms in order to bring effective therapies to the clinic more efficiently.

We are pleased to present this collection of articles from Cell Press focused on applications of AI in therapeutic 
development. Several present applications of predictive AI for drug discovery, drug synergy, or drug toxicity. Drug 
discovery is a potentially powerful application of generative AI, and we are including a review focused on generative 
molecular design for this purpose. And as the ultimate goal is the clinic, we are also including a review focused on 
the use of machine learning across the spectrum of cancer care. 

We hope these papers spark your enthusiasm for the potential of AI for improving therapeutic development and 
patient outcomes. Finally, we would like to thank ThinkCyte for providing the support that made publication of this 
collection possible.

Ruth Zearfoss
Editor-in-Chief, Cell Reports Methods
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Opinion

AI-powered therapeutic target discovery

Frank W. Pun,1 Ivan V. Ozerov,1 and Alex Zhavoronkov1,2,3,*

Disease modeling and target identification are the most crucial initial steps in
drug discovery, and influence the probability of success at every step of drug
development. Traditional target identification is a time-consuming process
that takes years to decades and usually starts in an academic setting.
Given its advantages of analyzing large datasets and intricate biological net-
works, artificial intelligence (AI) is playing a growing role in modern drug tar-
get identification. We review recent advances in target discovery, focusing on
breakthroughs in AI-driven therapeutic target exploration. We also discuss
the importance of striking a balance between novelty and confidence in
target selection. An increasing number of AI-identified targets are being vali-
dated through experiments and several AI-derived drugs are entering clinical
trials; we highlight current limitations and potential pathways for moving
forward.

Overview of target identification
The drug discovery pipeline is widely recognized to be a time-consuming, expensive, and
risk-laden process that typically requires around 10 years and $2 billion to bring a novel
drug to market [1]. By 2022 fewer than 500 successful drug targets had been identified
[2], representing a tiny fraction of the estimated druggable targets in humans [3,4]. Al-
though numerous drug candidates undergo extensive optimization during preclinical
stages, the average failure rate in clinical trials from 2009 to 2018 reached 84.6%i. The
lack of clinical efficacy remains the key factor contributing to the failure of both Phase 2
and 3 trials [5], leading to substantial financial losses and resource wastage. Identifying
the right drug targets is crucial for increasing the likelihood of developing clinically effective
therapies.

Target identification, the process of identifying the right biological molecules or cellular path-
ways that can be modulated by drugs to achieve therapeutic benefits, is increasingly important
in modern drug discovery. Although innovations in experimental and omic technologies have
been growing over the past few decades (Figure 1), identifying actionable therapeutic targets
remains challenging. The integration of multiomic data with AI (see Glossary) algorithms has re-
cently emerged as a promising approach for target identificationii,iii. We discuss here the con-
ventional target identification approaches with a focus on the application of AI algorithms to
target identification. This paper aims to offer a progressive outlook on the emergence of the
AI-driven drug discovery era and encourage the integration of AI technologies into drug discov-
ery pipelines.

Strategies in target identification: from experiments to machine learning
Target identification can be classified into three distinct strategies – experimental, multiomic, and
computational approaches (Figure 2). Using these methods collaboratively can generate novel
therapeutic hypotheses in exploratory target identification, thus significantly enhancing our under-
standing of complex diseases.

Highlights
Disease modeling and target discovery
are crucial initial steps in the drug discov-
ery process and significantly impact on
the success of drug development.

Given the advantages of analyzing large
datasets and complex biological net-
works, artificial intelligence (AI) is playing
a growing role in modern drug target
identification.

We discuss the use of deep learning
models for target discovery, AI-
identified targets validated through ex-
periments, and the use of synthetic
data produced using generative AI for
target identification.

Novelty, in addition to druggability and
toxicity, is a crucial factor in target selec-
tion. There is a trade-off between choos-
ing high-confidence and novel targets.

Over the past few years several AI-
derived drugs have entered clinical trials,
signaling the dawn of a new era in AI-
driven drug discovery.
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Experimental approaches
Experimental approaches, including affinity-based biochemical, comparative profiling, and
chemical/genetic screening, have demonstrated their striking contributions to target identification
since the 1960s. The use of small-molecule affinity probes, which allow traceless protein labeling
upon ligand–protein interaction [6], is the most straightforward method among the three experi-
mental approaches. The selection of probes is highly dependent on the identity of the starting mol-
ecule [7]. Stable isotope labeling by amino acids in cell culture (SILAC), an example of comparative
profiling, is a popular quantitative proteomics tool that uses stable isotope-labeled amino acids to
accurately differentiate cellular proteomes [8]. Studies conducted in multiple cancer types such as
hepatocellular carcinoma (HCC) [9], multiple myeloma [10,11], endometrial cancer [12], and colo-
rectal cancer [13,14] have clearly exemplified the effectiveness of SILAC in identifying pivotal
players in disease pathogenesis. Chemical/genetic screening, implemented by RNA interference

TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 1. The emergence of artificial intelligence (AI) in early drug development. (Upper panel) Key technological
advances in the history of target identification are classified into three types: experiment-based (red), multiomic (blue), and
computational (green) approaches. Traditionally, experiment-based methods have been the go-to approach for discovering
therapeutic targets. However, with the rise of big data, integrated analysis of multiomic data has become a more efficient
strategy for target identification. In addition, recent advances in AI-driven biological analysis have identified novel targets and
AI-designed drugs are now entering clinical trials. (Lower panel) AI applications in the early stages of drug discovery.
Abbreviations: AGC chemistry, affinity-guided catalyst chemistry; ALS, amyotrophic lateral sclerosis; DL, deep learning;
EGFR, epidermal growth factor receptor; GAN, generative adversarial network; GWAS, genome-wide association study; LD
chemistry, ligand-directed chemistry; MTOR, mammalian target of rapamycin; NSCLC, non-small cell lung cancer; SILAC,
stable isotope labeling with amino acids in cell culture; TID, target identification. Figure created with BioRender.com.
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Glossary
Artificial intelligence (AI): the ability of
a computer or computer-controlled
machine to perform problem-solving
and decision-making tasks that are
commonly associated with intelligent
beings.
Biomarker: a biological molecule in any
type of body fluid or tissue that serves as
a sign of a biological state.
Drug repurposing: the process of
identifying a novel therapeutic
application for existing drugs that have
been FDA-approved or clinically
investigated for specific medical
indications.
Drug–target interaction: an important
step in drug discovery that recognizes
how a chemical compound and a
protein target interact in the human
body.
Generative adversarial networks
(GANs): a class of machine learning
frameworks that consists of two neural
networks that compete against each
other during the training process and
improve their functionalities to generate
samples indistinguishable from the real
data.
Genome-wide association study
(GWAS): a method to identify genomic
variants that are statistically associated
with a risk for a disease or a trait by
comparing the frequencies of genomic
variants between people with and
without that specific disease or trait.
Indication prioritization: the process
of prioritizing the potential indications of
a drug based on the expected relevancy
of the drug and a specific indication
using AI.
Induced pluripotent stem cells
(iPSCs): artificial stem cells generated
from an adult somatic cell through the
coexpression of specific pluripotency-
associated genes, namely c-Myc, Oct3/
4, Sox2, and Klf4.
Machine learning: a branch of artificial
intelligence that focuses on mimicking
human learning processes via the use of
data and algorithms to gradually improve
its accuracy.
Natural language processing: a field
of AI that processes and analyzes large
amounts of natural language data with a
goal to enable computers to understand,
interpret, generate human language, and
extract information from documents.
Pharmacokinetics: the study of the
fate of an administered substance in an
organism, namely absorption,
distribution, metabolism, and excretion.
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(RNAi) or CRISPR-Cas9 gene editing, has been of great interest to biologists for decades. Owing to
its high specificity and efficiency [15], CRISPR has dramatically expanded our knowledge of the
mechanistic and pharmacological aspects of human diseases. For example, BRD2 was identified
as an essential regulator of the host response to SARS-CoV-2 infection by a targeted CRISPR in-
terference screen [16]. Making use of the CRISPR interference- and CRISPR activation-based
functional genomics platform, Ramkumar et al. identified the determining roles of HDAC7 and
the Sec61 complex inmodulating the immunotherapy response inmultiple myeloma [17]. Although
it has been 10 years since its introduction, CRISPR technology continues to evolve to further en-
hance its flexibility, simplicity, and efficiency, thus offering a great benefit to the research community
not only for target identification but also as a gene therapy and diagnostic tool.

Multiomic approaches
Multiomic data provide researchers with interconnected molecular information from different per-
spectives, including static genomic data and spatiotemporally dynamic expression andmetabolic
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Figure 2. Three exploratory strategies for target identification. Exploratory techniques for target identification can be
classified into three strategies: experimental, multiomic, and computational approaches. The experimental approach involves
conducting wet-lab experiments to identify targets based on affinity, genetic modification screening, and comparative
profiling. The multiomic approach predicts gene–disease associations by analyzing various omic datasets such as
genomics, transcriptomics, proteomics, epigenomics, and metabolomics. Lastly, the computational discovery approach
efficiently identifies potential targets by using machine learning or structure-based methods including reverse docking,
pharmacophore screening, and structure similarity analysis. Abbreviations: AGC chemistry, affinity-guided catalyst
chemistry; AGD, affinity-guided DMAP (4-dimethylaminopyridine); AI, artificial intelligence; LC, liquid chromatography; LD
chemistry, ligand-directed chemistry; LDT, ligand-directed tosyl; MS, mass spectrometry; RISC, RNA-induced silencing
complex; RNAi, RNA interference; siRNA, short interfering RNA. Figure created with BioRender.com.
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Recurrent neural networks: a class
of artificial neural networks with
feedback connections that are designed
to learn sequential or time-varying data.
Transfer learning: a machine learning
method where a pretrained model is
reused as the starting point for a model
on another related task; this approach is
commonly used as an optimization
technique to save time and increase
performance.
Therapeutic modality: the type of
therapy used to treat a disease or
medical condition, including small-
molecule drugs, protein-based
therapies, advanced therapies (such as
cell and gene therapies), and
microorganism-based therapies.
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profiles [18]. As the first established and most mature omics discipline [19], genomics focuses on
genetic variants in the DNA sequence. Large-scale genome-wide association study (GWAS)
analysis powered by next-generation sequencing has yielded hundreds of thousands of associ-
ations between genetic variants and complex diseases or traits [20], leading to the development
of breakthrough therapies such as the cystic fibrosis modulator drugs targeting CFTR mutations
[21], and novel drugs for the treatment of inflammatory bowel disease targeting the disease-
associated gene IL23A [22]. More recently, meta-analyses of published GWAS data have re-
vealed novel genetic loci attributable to different diseases, thus opening up drug repurposing
opportunities [23,24]. Although genomic evidence has been one of the indispensable factors in
target identification, distinguishing the causative genetic variants that lead to a given disease re-
mains challenging. In this regard, integrating multiple omic lines of evidence can be useful. Tran-
scriptomic and proteomic data can be used to identify causal genetic loci that regulate gene and
protein levels and facilitate the discovery of genes and pathways underlying disease pathogenesis
[25–27]. Likewise, epigenomic and metabolomic data can also serve as functional evidence for
GWAS-identified variants to support their disease associations and clinical applications [28–30].
As compared to single omic approaches, integrated multiomic analysis can provide a more com-
prehensive view of disease mechanisms and is therefore increasingly used to facilitate biomarker
and therapeutic target discoveries, treatment response, and patient prognosis predictions [31–34].

Computational approaches
Because typical experiment-based target identification is laborious and resource-intensive,
computational approaches have emerged as promising alternatives for achieving efficient tar-
get screening. Depending on the availability of protein structure and the chemical structure of
the compound of interest, pharmacophore screening [35], reverse docking [36], and structure
similarity assessment [37,38] have been used to predict novel biological targets for small mol-
ecules. On the other hand, AI is a growing discipline in computational science for target discov-
ery. Machine learning is an indispensable component of AI that can be applied either with or
without supervision. Supervised learning utilizes labeled datasets to train models for data clas-
sification and reliable outcome prediction. By contrast, unsupervised learning explores the hid-
den structure of unlabeled data without human intervention [39]. The application of machine
learning is not limited to predicting biological targets of the existing drugs or compounds,
and can also identify novel therapeutic targets for any disease of interest. The details of how
machine learning facilitates target discovery for disease treatment will be elaborated upon in
the following AI sections.

AI-driven target identification
In recent years we have witnessed an explosion of biomedical data ranging from basic research
on diseasemechanisms to clinical investigation in patients. Although large amounts of information
have been generated, the growth of data also poses challenges for data analysis. This is where
the emerging role of AI comes into play. Given the advantage of AI in processing and tackling
complex biomedical networks of data, using AI algorithms can reveal patterns and relationships
within the data that may not be apparent to humans, andmay possibly lead to better understand-
ing and treatment of diseases. AI hasmade notable contributions that facilitate biomarker and tar-
get identification [40–42], indication prioritization [43], drug-like molecule design [44,45],
pharmacokinetics prediction [46], drug–target interaction [47,48], and clinical trial design
[49] (Figure 1, lower panel). Although still in the early stages of clinical trials, AI-derived drugs
are increasingly emerging in clinical studies (Table 1), as exemplified by GS-0976 for the treatment
of non-alcoholic steatohepatitis, EXS-21546 for solid tumors, and INS018_055 for idiopathic pul-
monary fibrosis, which is the first-ever AI-derived drug with positive topline results in a Phase 1
clinical trial.
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Application of deep learning models in target discovery
In recent years machine learning-based algorithms, particularly deep learning methodologies,
have drawn significant attention and have achieved excellent results in pharmaceutical areas.
Deep learning, also known as deep neural networks, consists of multiple hidden layers of
nodes through which data processing and feature extraction are conducted successively in a
cascade manner [50]. Compared to traditional machine learning methods, more recent deep
learning-based architectures, such as generative adversarial networks (GANs), recurrent

Table 1. AI-derived drugs in clinical trials

Company Target Indicationa Compound Development status Trial numberb

BenevolentAI Trk Atopic dermatitis BEN-2293 Phase 2 NCT04737304

Exscientia A2AR Solid tumors EXS-21546 Phase 1 NCT04727138

5-HT1A Obsessive compulsive
disorder

DSP-1181 Phase 1 Undisclosedvi

5-HT1A/2A Alzheimer's disease
psychosis

DSP-0038 Phase 1 Undisclosedvii

PKC-θ Inflammatory diseases EXS4318 Phase 1/2 Undisclosedviii

Insilico Medicine Target X Idiopathic pulmonary fibrosis INS018_055 Phase 2 NCT05938920,
CTR20230776

3CLPro COVID-19 ISM3312 Phase 1 CTR20230768

USP1 BRCA-mutant cancer ISM3091 Phase 1 NCT05932862

Nimbus Therapeutics ACC Nonalcoholic steatohepatitis NDI-010976/GS-0976 Phase 2 NCT02856555,
NCT03987074,
NCT02891408,
NCT02876796

Pharos iBio FLT3 Acute myeloid leukemia
Ovarian cancer
Triple-negative breast cancer
Radiation sensitizer

PHI-101 Phase 1 NCT04842370
NCT04678102

Recursion
Pharmaceuticals

CCM2 Cerebral cavernous
malformation

REC-994 Phase 2 NCT05085561

HDAC Neurofibromatosis type 2 REC-2282 Phase 2/3 NCT05130866

MEK1/2 Familial adenomatous
polyposis

REC-4881 Phase 2 NCT05552755

Relay Therapeutics SHP2 Solid tumors RLY-1971/RG-6433 Phase 1 NCT04252339

FGFR2 FGFR2-driven cancers
Intrahepatic
cholangiocarcinoma
Advanced solid tumors

RLY-4008 Phase 1/2 NCT04526106

PI3Kα Solid tumors RLY-2608 Phase 1 NCT05216432

Schrödinger MALT1 Non-Hodgkin's lymphoma SGR-1505 Phase 1 NCT05544019

Structure Therapeutics GLP1R Type 2 diabetes
Obesity

GSBR-1290 Phase 1 NCT05762471

APLNR Pulmonary arterial
hypertension
Idiopathic pulmonary fibrosis

ANPA-0073 Phase 1 ACTRN12621000644864

Valo Health S1P1 Post-myocardial infarction
Acute kidney injury

OPL-0301 Phase 2 NCT05327855

ROCK1/2 Diabetic retinopathy
Diabetic complications

OPL-0401 Phase 2 NCT05393284

aIndications retrieved from the company pipeline.
bFor undisclosed trial numbers, press releases are provided as the source of reference.
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neural networks, and transfer learning techniques, have attracted increasing attention and
have been applied to various aspects of healthcare, such as de novo small-molecule design
[51], aging research [44], and pharmacological prediction of drugs based on transcriptional
data of drug-perturbed cell lines [52]. Using publicly available multiomic data and text mining
(Figure 3, Key figure), deep learning has recently been used in studies of fatal disorders with ur-
gent and unmet clinical needs. To identify actionable therapeutic targets in amyotrophic lateral
sclerosis (ALS), Pun et al. combined a variety of bioinformatic- and deep learning-based models
that were trained using disease-specific multiomic and text-based data to prioritize druggable
genes, revealing 18 potential targets for ALS treatment [53]. In addition, Fabris et al. established
a deep learning-based method with a novel modular architecture to identify human genes asso-
ciated with multiple age-related diseases by learning patterns retrieved from gene or protein fea-
tures such as Gene Ontology terms, protein–protein interactions, and biological pathways [54].
West et al. developed a deep learning ensemble trained using the transcriptomic profiles of
>12 000 embryonic and adult cells [55]. A novel target (COX7A1) for controlling the embryonic–
fetal transition was revealed, which could facilitate our understanding of normal development,
epimorphic tissue regeneration, and cancer.

Furthermore, large language models also aid therapeutic target discovery via rapid biomedical
text mining. Pretrained on a vast amount of text data extracted from millions of publications,
large language model-based Chat functionalities, such as BioGPT from Microsoft [56] and
ChatPandaGPT from Insilico Medicineiv, can connect diseases, genes, and biological processes
to allow rapid identification of the biological mechanisms involved in disease development and
progression, as well as the identification of potential drug targets and biomarkers. The ability of

Key figure

Workflow of artificial intelligence (AI)-driven target discovery

Target
identification

Text Data

Omic data models

●

● Metabolomics
●

Transcriptomics

●

Signaling pathways
Molecular interactions

●

● Patents

Development status
● Clinical trial phase
● Ligand/compound availability

Druggability
●

Therapeutic modality
● Protein localization
●

Availability of protein structure

Disease causality

Publications●

● Clinical trials
● Financial reports 

● Protein-protein interaction

Target selection criteria

Novelty

Toxicity
● Gene essentiality
● Tissue specificity
● Cellular process involved

● Proteomics

Grants

● Genomics

● Epigenomics

Druggable classes 

●

TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 3. AI prioritizes targets for specific indications by using multi-models that utilize a diverse range of publicly available
omic and text data. Omic data encompass genomics, transcriptomics, proteomics, epigenomics, and metabolomics.
These data provide information about altered signaling pathways, molecular interactions, and protein–protein interactions
that can serve as additional inputs for target prioritization. Text-based data are retrieved from funding reports, patents,
publications, and clinical trials. During target prioritization, multiple target selection criteria such as protein family class,
development status, druggability, toxicity, and novelty can be applied to refine the list of AI-driven targets to align with
specific research objectives.
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the large language models to understand natural language and interpret complex scientific con-
cepts could make them valuable tools in accelerating disease hypothesis generation. Neverthe-
less, large language models, which are typically trained on human-generated text, may not
have the ability to determine the accuracy and appropriateness of the input data. As a result,
they could inadvertently perpetuate human biases and preconceived notions. Moreover, given
that these models rely heavily on published data, they may have limited potential to identify gen-
uinely novel targets. Therefore, it is important to acknowledge these limitations and to comple-
ment their use with other models to ensure the discovery of truly novel and pertinent targets.

The use of AI-generated synthetic data for target identification
'Synthetic data' refers to artificially generated data that mimic real-world patterns and charac-
teristics. By leveraging AI algorithms, synthetic data can be created to simulate various biolog-
ical scenarios, thus enabling researchers to explore and analyze a broader range of possibilities
[57–59]. This approach can be particularly valuable in therapeutic areas where experimental
data are scarce or difficult to obtain. For example, in rare diseases or conditions where patient
data are limited, AI can generate synthetic data based on existing knowledge and patterns.
These synthetic data can then be used to train AI models and identify potential therapeutic
targets that may have been overlooked [60]. Synthetic data can also be used to validate predic-
tions made by AI algorithms, thus providing an additional layer of confidence in the target
discovery process.

Furthermore, AI-generated synthetic data can help to address data imbalance or bias issues. In
some therapeutic areas, particular patient populations may be under-represented in the available
datasets, leading to challenges in target identification. AI can generate synthetic data representing
these under-represented populations, allowing more comprehensive and inclusive analysis [61].

Although AI-generated synthetic data can offer advantages in exploring a broader range of pos-
sibilities and addressing data scarcity, it is essential to recognize its limitations. A model cannot
simulate data containing complexities that the model is unaware of, and this limitation should
be fully acknowledged [62]. Simulating under-represented populations, although tempting due
to data scarcity, raises ethical concerns because collecting relevant data should be pursued
whenever possible rather than relying solely on synthetic data [63,64]. Moreover, ensuring that
the synthetic data accurately capture the intricate and nuanced aspects of real-world biological
systems presents a significant challenge. Therefore, implementing robust validation and quality
control measures becomes crucial to establish the reliability and relevance of the generated
data [65].

To responsibly validate and control the quality of synthetic omic data, several options can be con-
sidered. First, comparative analyses can be performed to assess the similarity between the syn-
thetic data and real-world data. This can involve statistical measures, such as comparing
distributional characteristics, correlation patterns, or feature-level comparisons. In addition,
benchmarking against known ground-truth data, where available, can help to evaluate the accu-
racy and performance of the synthetic data [66]. Another approach involves conducting func-
tional analyses, such as focusing on the representation of particular cellular types in the
synthetic dataset in the case of single-cell data, to determine whether the synthetic data captures
biological knowledge and exhibits coherent functional relationships [67]. Finally, involving domain
experts and conducting rigorous peer review can provide valuable insights and ensure the appro-
priateness and relevance of the synthetic data for target identification [59]. These validation and
quality control measures, although challenging, can contribute to establishing confidence in the
use of synthetic omic data in research and drug target discovery.
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Target selection criteria
The criteria used to select drug targets can greatly impact on the success of drug development
(Figure 3). Causality represents a crucial criterion for selecting drug targets. Understanding the
causal mechanisms behind a disease can help researchers to identify driver genes and key path-
ways that have the greatest potential for effective disease treatment [68]. Apart from experimental
methods, a common computational approach to infer causal relationships between targets and
diseases is network-based analysis, which involves the construction of biological networks that
capture the relationships between different genes, proteins, drugs, and other molecular entities
[69]. These networks can be used to identify potential targets that might have a causal involve-
ment in a disease based on their centrality and connectivity within the network. The growing in-
terest in AI and computational biology has led to a need for the development of machine
learning methods that can be utilized for causal inference in biological networks [70]. In this re-
gard, the adaptation of classification algorithms for causal discovery marks the emergence of
causal inference models in biomedical research [71–73].

Another important consideration is the druggability of a target – the ability of a target to be mod-
ulated by a drugmolecule. Factors that affect druggability include therapeuticmodality, protein
localization, class, and structure availability. For instance, small-molecule drugs are typically used
for targets with well-defined binding pockets (e.g., kinases), whereas protein-based therapies are
more suitable for targets that are difficult to tackle with small molecules. Structural information on
drug targets is helpful for drug design and optimization with AI-based predictions, such as
AlphaFold [74], thus expanding protein structure coverage. Target toxicity must also be consid-
ered by assessing the cellular processes, gene essentiality, and tissue specificity involved.

Trade-off between high-confidence and novel targets
Novelty is another crucial factor in target selection in addition to causality, druggability, and toxic-
ity. Text-based evidence can be used to assess novelty and confidence of a given target. Through
scrutinizing the relationship between approved drugs, molecular targets, and therapeutic indica-
tions, Santos et al. revealed that high-confidence targets (or 'privileged' target families) accounted
for the majority of approved drugs, whereas drugs tackling novel first-in-class targets repre-
sented only a small proportion, although this is increasing, especially in the field of oncology
[75]. Striking a balance between novelty and confidence is essential for target selection. AI-
powered natural language processing methodologies can aid this target selection process
by extracting supporting evidence connecting a potential target to an indication based on huge
amounts of data involving scientific publications, grants, and clinical trials, and this can provide
a quantifiable scale for the novelty and confidence of targets in the context of the disease and en-
able flexible target-hunting workflows [76]. In addition, tools have been developed to quantify tar-
get novelty and confidence. TIN-X is an example that uses text-mining data processed from the
scientific literature to quantify target novelty and confidence by providing two bibliometric indices,
namely the 'novelty index' that represents the scarcity of target-associated publications, and the
'importance index' that assesses the strength of the association between a given target–disorder
pair [77]. Furthermore, AI could facilitate drug repurposing by connecting a high-confidence tar-
get with known drugs to new disorders where the drugs have not been investigated, enabling
cost-effective and time-saving drug discovery for both common and rare diseases [78].

AI-identified targets validated in experiments
Target validation using cell and animal models is a crucial step in target discovery to reduce the
project attrition rate and the cost of drug development in the pharmaceutical industry (Box 1).
An increasing number of AI-identified targets are being successfully validated. For example, 28
AI-proposed targets for ALS treatment were validated in an ALS-mimicking Drosophila model,

Trends in Pharmacological Sciences
OPEN ACCESS

568 Trends in Pharmacological Sciences, September 2023, Vol. 44, No. 9

CellPress logo


revealing eight unreported targets whose suppression strongly rescues eye neurodegeneration
[53]. In addition, in the same therapeutic area, Zhang et al. developed a machine learning-
based method to identify KANK1 as a novel gene linked to ALS and validated the neurotoxic
effects of KANK1 mutations reproduced by CRISPR–Cas9 in human neurons [79]. Inhibition of
HDAC6 was identified as a cardioprotective strategy by deep learning, and was validated via a
BAG3 cardiomyocyte-knockout mouse model of dilated cardiomyopathy [80]. CDK20 was
identified as a target for the treatment of HCC using deep learning-based methods, and a
highly potent small-molecule inhibitor designed by generative AI demonstrated selective
antiproliferation activity in an HCC cell line [81]. Furthermore, Zeng et al. developed deepDTnet
based on 15 heterogeneous types of chemical, genomic, phenotypic, and cellular networks to
facilitate in silico identification of molecular targets for known drugs [82]. One of the identified
drugs specifically targeting human ROR-γt shows therapeutic effects in a mouse model of
multiple sclerosis.

Concluding remarks and future perspectives
Target discovery is a crucial initial step in the modern drug discovery pipeline. Given that only a small
proportion of the potentially druggable targets in humans have been identified, there is a pressing
need for effective target discovery methods. The growing number of AI-identified targets being val-
idated in experiments highlights the benefits of incorporating AI algorithms into target identification to
enhance the efficiency of novel target discovery and the development of new therapeutics.

One area where AI is expected to make significant contributions is in tackling complex diseases.
Diseases such as cancer, neurodegenerative disorders, and autoimmune conditions often in-
volve intricate molecular mechanisms that are challenging to unravel. AI-driven target discovery
methods can help to uncover novel targets and pathways underlying these diseases, paving
the way for the development of more effective treatments.

Moreover, unexpected infectious disease outbreaks pose a constant threat to global health. The
rapid identification of potential drug targets and the development of antiviral therapies are crucial
for combating emerging pathogensv. By analyzing genomic data, AI algorithms can aid the iden-
tification of essential viral proteins or host factors that can be targeted to inhibit viral replication,
thus providing valuable insights for the development of antiviral drugs [83].

Box 1. Advances in target validation

Target validation using both cell and animal models is crucial to confirm the modulatory effects of the proposed target on
disease development. Although 2D cell culture and rodent models are the prevailing tools for target validation, the difficulty
of system establishment and the lack of complexity or recapitulation of human development limit their power as highly
representative models. Organoids – 3D cell models derived from either induced pluripotent stem cells (iPSCs) or adult
stem cells (ASCs) – have arisen as a promising technique for both disease research and drug testing by allowing the cap-
ture of tissue architecture and cellular microenvironment in vitro [84]. Taking advantage of their self-organizing ability,
organoids are able to mimic actual organ development, and have been successfully established for multiple human organs
(e.g., intestine, stomach, lung, liver, kidney, and brain) to explore the pathogenic mechanisms of various diseases [85–87].
Furthermore, because patient-derived organoids can retain the genetic, histopathological, and therapeutic response
phenotypes of the primary disease tissue, these models have made their way into identifying personalized therapeutic
regimens and drug efficacy testing [88,89]. In colorectal cancer, patient-derived colon organoids served as an effective tool
to evaluate the efficacy of CAR-T cell therapy [90].

In both industrial and clinical laboratories there is a tendency to adopt automation to streamline experiments, data collec-
tion, and data analysis. With recent breakthroughs in bioengineering and machine learning, laboratory automation can
greatly improve work efficiency and reproducibility by increasing data generation rate, reducing human technical variation,
and avoiding contaminant exposure [91,92]. The development and commercialization rate of novel therapeutic interven-
tions can also be enhanced by automation. For example, Insilico Medicine have launched an AI-driven robotic laboratory
that is an interconnected expansion of their end-to-end AI drug discovery platformix. Despite several remaining obstacles,
the progressive integration of automation will revolutionize the laboratory environment to maximize research success.
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Outstanding questions
Can AI algorithms accurately predict
target validation results and adverse
effects, as well as druggability, speci-
ficity, off-target effects, and potential
interactions with other drugs, for po-
tential targets across different test sys-
tems (cell lines, animals, and humans)?

How can AI-driven target discovery ap-
proaches be validated, benchmarked
against traditional experimentalmethods,
and also effectively incorporate domain
knowledge and expert insights to ensure
reliability, reproducibility, and enhanced
target identification and validation?

How can AI algorithms uncover the full
mechanism of action at selected tar-
gets, consider the heterogeneity and
variability of diseases including individ-
ual variations, and leverage this under-
standing to optimize combination
therapies, leading to the identification
of synergistic drug–target combinations
for improved treatment outcomes?

How can we validate the reliability and
robustness of predictions and
discoveries based on synthetic AI-
generated data, and how does it
compare to experimental validation
using real-world data?
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AI also has the potential to revolutionize the discovery of efficient combinations of therapeutic tar-
gets and mechanisms. Complex diseases often involve multiple molecular pathways and inter-
play among various biological factors. AI algorithms can analyze diverse datasets, including
genomic data, patient records, and synthetic lethality, to identify synergistic combinations of tar-
gets and mechanisms that may offer enhanced therapeutic effects. This approach can potentially
transform treatment strategies, particularly in diseases where monotherapies have shown limited
effectiveness.

Furthermore, the integration of AI with fully automated robotic laboratories offers the potential for
high-throughput target validation and screening. Automated experiments, coupled with AI-driven
data analysis, can expedite the validation of predicted targets, enabling researchers to assess
their therapeutic potential quickly. This combination of AI and automation has the potential to
revolutionize the drug discovery process and significantly reduce the time and cost required for
target identification and validation.

Despite the tremendous progress made in AI-driven target discovery, several outstanding ques-
tions and challenges remain (see Outstanding questions). Ethical considerations, data privacy,
and regulatory frameworks are crucial aspects that must be addressed to ensure responsible
and ethical deployment of AI in drug development. Furthermore, the interpretability and
explainability of AI algorithms are essential for gaining trust and acceptance from the scientific
andmedical communities. It is pertinent to note that, although AI has demonstrated potential in ex-
pediting the early stages of drug discovery such as target identification and lead optimization, it
cannot significantly shorten the time required for clinical trials during drug development. This is be-
cause of the long period of time spent on ethical and regulatory approval, patient recruitment, du-
ration of treatment, and data analysis, irrespective of whether the drug was developed by AI or not.

In summary, AI has emerged as a powerful tool in target discovery and drug development, and
is revolutionizing how we identify novel drug targets and repurpose existing drugs. With the
continued advancements in AI technology and the collaborative efforts of researchers, we
can look forward to a future where AI plays an indispensable role in accelerating the develop-
ment of safe and effective therapeutics for a wide range of diseases, ultimately improving
human health and well-being.
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SUMMARY

Recent advances and accomplishments of artificial intelligence (AI) and deep generative models have estab-
lished their usefulness in medicinal applications, especially in drug discovery and development. To correctly
apply AI, the developer and user face questions such as which protocols to consider, which factors to scru-
tinize, and how the deep generative models can integrate the relevant disciplines. This review summarizes
classical and newly developed AI approaches, providing an updated and accessible guide to the broad
computational drug discovery and development community. We introduce deep generative models from
different standpoints and describe the theoretical frameworks for representing chemical and biological
structures and their applications. We discuss the data and technical challenges and highlight future direc-
tions of multimodal deep generative models for accelerating drug discovery.

INTRODUCTION: DEEP GENERATIVE MODELS IN DRUG
DISCOVERY

A recent study estimates that pharmaceutical companies spent

$2.6 billion in 2015 for the development of new, US Food and

Drug Administration-approved drugs, up from $802 million in

2003.1 Although more direct costs are incurred during clinical

trials, since the preclinical investment comes earlier the capital-

ized costs of the two stages are roughly equal. Recent ad-

vances in computational sciences and technologies capture

the requisites and urgencies and provide a set of potentially

promising approaches. Among these, the developers can

select the right artificial intelligence (AI) to target the problem

at hand, in particular deep generative models, appropriate pro-

tocol, and factors. Collectively, they map paths that integrate

biology, chemistry, computational science, pharmacology,

and disease treatments.

The rapid growth in computing power, amount of data,

and advanced algorithms has led to breakthroughs in AI

for drug discovery,2 especially in the application of deep

generative models.3–5 The models have emerged as high po-

tential tools to transform the design, optimization, and syn-

thesis of small molecules, and macromolecules (Figure 1).

Applications of deep generative models have already deliv-

ered new partially optimized candidate leads, in some cases

in less time typically required by conventional sequential ap-

proaches.6–10 If applied on a large scale, deep generative

modeling has the potential of boosting the development

(R&D) process.

Deep generative models correspond to a theoretical frame-

work for generating novel chemical and biological structures

with desired properties using data structures, such as graphs

and fingerprints, and operations, such as the flow of functional

or experimental information. Creative deep generative models
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can significantly promote algorithm development and applica-

tion in drug discovery. In this ‘‘big data’’ era, deep generative

models would offer a cutting-edge technology that could

revolutionize an informatics view of biology, disease, and

therapeutics. In this review, we describe classical and state-

of-the-art deep generative models and their applications

(Figure 1) in computational drug discovery and discuss limita-

tions and challenges. Our aim is to provide an overview of cur-

rent tools and techniques (the toolbox) of deep generative

models in multiple applications on small-molecule and macro-

molecular systems.

THE TOOLBOXES FOR DEEP GENERATIVE MODELS

Designing a novel drug is a complex undertaking that needs to

satisfy pre-defined criteria for on-target potency, specificity rela-

tive to off-targets, physical properties, and other chemistry and

biology measures. Traditional methods, which require chemists

to select and validate candidate molecules experimentally from

a vast chemical space, are ineffective. Deep generative models

have become popular because they can automatically generate

new bioactive and synthesizable molecules in a time- and cost-

effective way.

Big biomedical datasets for drug discovery
We begin with a brief overview of several commonly used chem-

ical and bioinformatics databases, which provide both labeled

and unlabeled data to train, validate, and test deep generative

models for the drug discovery community. Pharmaceutical com-

panies have their in-house proprietary collections on the order of

2–3M compounds with associated data from past drug discov-

ery quests. In the public domain, the ZINC database collected

nearly 2 billion purchasable, commercially available, ‘‘drug-

like’’ compounds for in silico screening.11 Its massive sizemakes

it also useful for learning molecular patterns for pre-training

generative models. Bioactive molecules, such as those in the

manually curated ChEMBL database, which approaches 1.5M

of real bioactive molecules with every molecule having at least

A C

B

D

Figure 1. AI and deep generative model applications in the drug discovery pipeline

Several successful applications of AI and deep generative models in various stage of the drug development pipeline: (A) AI-assistant target selection and

validation, (B) molecular design, lead optimization, and chemical synthesis, (C) biological evaluation (in vitro and in vivo), clinical development, and post marketing

surveillance, and (D) several successful preclinical and clinical molecules identified by AI and deep generativemodels. DDR1, discoidin domain receptor 1; DDR2,

discoidin domain receptor tyrosine kinase 2; GSK3B, glycogen synthase kinase 3 beta; JNK3, c-Jun N-terminal kinase 3.
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one experimental bioactivity measurement,12 are of particular in-

terest. They can be used for training models to generate mole-

cules with certain properties. The GDB-17 database13 enumer-

ates most organic molecules (166.4 billion) of up to 17 heavy

atoms of C, N, O, S, and halogens. This includes many of the

lower-molecular-weight small-molecule drugs as well as

the smaller typical lead compounds. Ultra-large chemical

databases,14 such as Enamine (https://enamine.net) and

REALdb,15 contain billions of synthesizable compounds identi-

fied by chemoinformatics approaches and expert-system type

rules. These ultra-large databases offer an opportunity to train

models with broadened applicability. In addition to small-mole-

cule resources, several macromolecular databases offer en-

riched data for generative model training in macromolecule

design, such as the PDB.16

Representation of compounds/molecules
The representation of molecules is important for generative

models. There are three types of representations: (1)

sequence based, (2) graph based, and (3) images (Figure 2).

The unprecedented success of natural language processing

(NLP) inspired the idea to describe molecules in symbols in

a way analogous to human language. Semantics and gram-

mars in biological structures bear a resemblance to human

language; hence, molecules can be represented as se-

quences of characters. De novo small-molecule designs

generally use simplified molecular input line entry systems

(SMILES).17 The sequence-based structure is generated by

following the SMILES grammar rules encoded into vectors

(Figure 2A). A more direct method to represent molecules is

graph based.18 In the graph representation, the atoms of a

small molecule form a set of nodes and the bonds are re-

garded as edges (Figure 2B). For macromolecules, a contact

map19 is a graph that denotes the distance between any two

amino acid residue pairs. Training graph-based models on a

large number of nodes is expensive because the space

complexity increases with the square of their number.20

Compared with sequence-based approaches, graph-based

representations are easy to implement as graph convolutional

layers, and bond weights can be optimized in message-pass-

ing networks. Sequence-based representations are in general

compact, memory-efficient, and easily searchable. However,

both sequence-based and graph-based approaches cannot

capture the 3D information of ligands or proteins in biologi-

cally meaningful ligand-protein interactions. The 3D confor-

mation of a molecule captures the relative orientation of

atoms21–24 (Figure 2C). Several latest 3D representations

were presented as well.25–27 DEVELOP incorporate an

existing graph-based deep generative model, De-Linker,

along with a convolutional neural network to utilize 3D repre-

sentations of molecules and target pharmacophores.28

DeepLigBuilder is a graph-based generative model that uti-

lizes 3D structural representation of ligand-receptor interac-

tions for the end-to-end design of chemically and conforma-

tionally valid 3D molecules with drug-likeness properties.29

Traditional image or 3D representation of proteins requires

accurate 3D structural data from cryoelectron microscopy

and crystallography, which is challenging to obtain. Recent

AI approaches, such as AlphaFold2, can provide massive

protein 3D data to address these challenges.30

Recurrent neural networks
Recurrent neural networks (RNNs) are fundamental components

of generative neural networks in processing human language.

They are useful for modeling systems that have a sequential or

time component and have been powerful in NLP automated

computer code generation31 and musical composition.32 The

language of molecules, such as SMILES, is similar to human lan-

guage. Thus, it is natural to use RNNs for generating molecules

based on sequential representation. As depicted in Figure 3A,

SMILES (i.e., ‘‘c1cc . c1’’) can be generated by RNNs in the

following way. RNNs receive the first character ‘‘c’’ and assign

different probabilities to possible next characters: character

‘‘1’’ would receive a high probability and may be sampled as

the next one. ‘‘1’’ is feedback input to RNNs. This process is

repeated until the end token ‘‘\n’’ is generated. Long short-

term memory (LSTM)33 and gated recurrent unit (GRU)34 intro-

duce a gate mechanism to remember valuable input information

for a long series of steps, lacking in traditional RNNs. Whether

LSTM or GRU is preferable may depend on the specific

application. LSTM cell can hold much longer history than GRU.

However, additional parameters in LSTM may increase the risk

of overfitting. RNNs with LSTM or GRU are among the most

promising for the generation of de novo small molecules under

the representation of SMILES.35

Variational autoencoder
An autoencoder (AE) is constructed of two networks: (1) one (the

encoder) is trained tomap the input into a low-dimensional latent

vector, and (2) the other (the decoder) to map the latent vector

into the inputted data. The original AE creates a latent space

by reproducing the input. To avoid overfitting and discontinuities

in the original AE, variational AE (VAE) regularizes the latent

space by replacing latent space points with distributions. In a

pioneering work, VAE was employed for molecule generation,

ushering in a new strategy in de novo drug design.10 As shown

in Figure 3C, the encoder is trained to map the molecules (e.g.,

SMILES) into a low-dimensional latent vector that is assumed

to be sampled from a Gaussian distribution, and the decoder

to map the latent vector into the inputted molecules (e.g.,

SMILES). The latent vectors are constrained to follow a probabil-

ity distribution (usually Gaussian distribution) so that a molecule

is represented as an explicit probability distribution over latent

space. When the encoder and decoder are trained jointly, the

output must reconstruct the training samples’ probability distri-

bution. Recently, learning disentangled representations for

VAE has attracted increasing attention, where the main goal is

to make each latent variable of the latent vector encode an inde-

pendent property or factor of data.36 If disentangled VAE is suc-

cessfully introduced for molecular generation, a molecular prop-

erty can be edited without changing other properties, by editing

the latent variables associated with that property.

Generative adversarial networks
The invention of generative adversarial networks (GANs)37

started a flurry of generative models. Unlike VAE, GANs do not
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work with an explicit probability density function (Figure 3D), but

provide an adversarial training framework composed of a gener-

ator and a discriminator. The discriminator trains a classification

model aiming at maximizing the error rate of synthetic molecules

from the generator, which resemble the real data. The generator

and the discriminator are trained together in an adversarial, zero-

sum game, until the discriminator model is fooled, meaning the

generator network is generating plausible (i.e., realistic fake)

molecules.

Flow-based models
VAE and GAN do not explicitly model the real probability density

function. VAE implicitly optimizes the log likelihood of the data by

maximizing a lower bound on a likelihood function, whereasGAN

avoids modeling the distribution but learns in an adversarial way

to measure the difference between ‘‘valid molecules’’ and ‘‘syn-

thetic molecules.’’ Deep flow-basedmodels resolve the intracta-

bility issue of explicit density estimation by leveraging normal-

izing flow.38 A normalizing flow is an invertible deterministic

transformation between the raw data space and latent space

(Figure 3B). For example, a recent method called MoFlow learns

a chain of transformation to map valid molecules to their latent

representations, and the reverse chain of transformation to

map the latent representations to valid molecules.39 One major

limitation for the flow-based models is that they are time

consuming due to the complex hyperparameter tuning pro-

cesses. To take full advantage of the flow-based models, the

molecular graphs must be transformed into continuous data by

incorporating real-value noise into the molecular generation

flow.

Reinforcement learning
Deep RL has emerged as one of the most prominent toolboxes

for optimizing an objective, especially with recent break-

throughs, such as AlphaGo.40 The immensity of the chemical

space is similar to Go’s enormous possible solution space;

hence, RL is a potential method for exploring the chemical

space by a dynamic decision process.41 As depicted in Fig-

ure 3E, RL—consisting of an agent, a reward function, and envi-

ronment—aims to optimize toward a user-directed target. The

agent chooses the next action, and the reward function evalu-

ates the quality of the actions according to the environment

(domain-specific rules) and provides feedback to the agent. Af-

ter the generative model is trained on a large and general set of

molecules to learn the SMILES grammar, RL can be applied as a

technique for fine-tuning of target properties, such as synthetic

accessibility42 and quantitative estimate of druglikeness,43

which assesses physical properties. For example, policy

gradient for forward synthesis (PGFS) (more below) was pro-

posed to generate synthetically accessible molecules using

RL.44 For this, (1) the agent is a neural network; (2) the policy ac-

tions are chemical transformations executed by modifying a

molecule by adding or removing atoms and bonds; and (3) the

reward is synthetic accessibility.44

APPLICATIONS IN SMALL-MOLECULE DRUG DESIGN

Conventional exploration, such as virtual screening,45,46 needs

to navigate a vast chemical space, posing time and cost chal-

lenges. De novo design, a technique of automatically generating

molecules with desired properties from scratch, has benefitted

A B C

Figure 2. A diagram illustrating three molecular representation approaches

Three molecular representation approaches include: (A) one-dimensional (1D) sequence-based representation; (B) graph-based representation; and (C) 3D

representation for both small molecules and macromolecules (i.e., proteins). The value of contact map matrix is 1 if the distance is greater than a predetermined

threshold, otherwise it is 0.
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from advances in deep generative models.47 Here, we describe

their applications toward various design purposes.

Generating valid small molecules
As deep generative models for de novo small-molecule design

were emerging, research initially focused on how to generate

molecules with high validity, with a particular emphasis on the

grammar and semantics of small molecules. In 2016, Gómez-

Bombarelli et al. pioneered a data-driven method that generates

molecules by mapping discrete high-dimensional chemical

space to and from continuous latent space.10 Themodel showed

that training VAE jointly with a molecular property prediction task

and optimizing via a Gaussian process were promising. This

paradigm promoted the development of de novo small-molecule

design, even if the output included invalid molecules. Subse-

quently, inspired by the compiler theory where the syntax and

semantics check is done via syntax-directed translation (SDT),

Dai et al. incorporated SDT into VAE for constraining the

decoder.48 The proposed model (SD-VAE) can generate both

syntactically and semantically valid molecules.48

Previous works achieved high validity by incorporating extra

constraints. Inspired by fragment-based drug discovery, Jin

A

B

C

D

E

Figure 3. A diagram illustrating the theory framework of five deep generative models (A–E) in the drug discovery applications

RNN, recurrent neural networks; VAE, variational autoencoder; GAN, generative adversarial networks; RL, reinforcement learning.
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et al. proposed junction tree variational encoder (JT-VAE).49 JT-

VAE considers chemically valid substructures, such as aromatic

rings as nodes in the graph structure. A molecular graph assem-

bled by these nodes can maintain chemical validity without im-

plementing additional chemical rules. JT-VAE reached 100%

validity due to obeying the ground truth in chemistry by gener-

ating bioactive molecules from fragments. A new AE, the Was-

serstein autoencoder character (cWAE),50 incorporates adversa-

rial training and has shown improved model accuracy. When

applied to molecular design and trained on 1.6 billion com-

pounds, compared with JT-VAE, cWAE produces an accurate

generativemodel (the compound reconstruction error is reduced

by over 80%).51 MoFlow39 generates amolecular graph in a one-

shot manner that generates bonds and atoms by a flow-based

model and then assembles them into amolecular graph. Instead,

MolGrow52 generates a molecular graph in an iterative manner,

termed a hierarchical normalizing flow model via generating mo-

lecular graphs from a single-node graph by recursively splitting

every node into two. Experimental results show that both Mo-

Flow and MolGrow can generate 100% valid molecules.

Generating molecules with drug-like properties
With the gradualmaturity of generativemodels, molecular gener-

ative models have been aiming to find molecules with specific

properties, not only focusing on their validity. Drug-like proper-

ties, such as biological activity and synthetic accessibility, are

critical for the success of drug candidates. In 2020, a molecular

GAN model53 conditioned on gene expression signatures was

shown to generate molecules with a high probability to induce

a desired transcriptomic profile.

Generative tensorial reinforcement learning (GENTRL)54 was

designed to generate novel molecules that can inhibit DDR1 (dis-

coidin domain receptor 1) by designing a reward function. The

generated molecules were evaluated using in vitro and in vivo

mouse assays to verify the binding affinity on DDR1 and the pre-

clinical and pharmacokinetic properties. With a time frame of

46 days from target selection to partially validated molecule,

GENTRL validated a promising outlook for accelerating drug dis-

covery (Figure 1D). Notably, GENTRL leveraged a set of relevant

information which is frequently available, such as crystal struc-

ture data and information related to active compounds. This

model is not generalizable to cases where target-specific activity

data are unavailable, and a model requiring less information

could be more practical in such cases.

PGFS44 was designed to generate molecules that can be

feasibly synthesized. PGFS treats the molecular generation

problem as a sequential decision process of selecting reactant

molecules and reaction transformation in a linear synthetic

sequence, where the choice of reactants is considered an action

and synthetic accessibility a reward. PGFS has been validated in

an in-silico proof-of-concept associatedwith three HIV targets.44

Generating molecules with multi-objective drug-like
properties
Generative models for de novo molecular generation are able to

design molecules with multiple design constraints such as po-

tency, safety, and desired metabolic profile. Molecules with

such constraints will better meet the requirements of drug dis-

covery. RationaleRL55 trained a graph-based RL model to com-

plete a pre-selected molecular subgraph into an integral mole-

cule with several desired co-existing properties, such as

bioactivities towardmultiple targets (e.g., GSK3b and JNK3; Fig-

ure 1D), quantitative estimate of drug-likeness, and synthetic

accessibility. As part of multi-objective optimization, the predic-

tiveness to drug-likeness has been significantly improved by

combining individual classifiers and calculating their Bayesian

errors. The difficulty lies in how to define and characterize non-

drug-like molecules.56

Generating better bioavailable molecules with
optimization
Molecular optimization aims toward desired properties for a

given starting molecule. This process is analogous to image-

to-image translation (e.g., turn horses into zebras) in computer

vision or style transfer in NLP. Jin et al. presented an optimization

method inspired by style transfer.57 Molecular optimization can

be formulated as graph-to-graph translation via converting one

molecular graph to another with better properties using the

paired training sets.

Inspired by the image-to-image translation approach that

CycleGAN58 learned to translate an image from a source domain

X to a target domain Y in the absence of paired examples, Mol-

CycleGAN59 was proposed and trained on two datasets with and

without a desired property. The training framework consists of

two GANs forming a cycle: (1) the first GAN is used to generate

molecules with the desired property when the input is not equip-

ped with the target property, and (2) the second network has the

opposite input/output order. The objective of the model is to

minimize the distance between the original molecules and the

generated molecules of the second network.

Capturing 3D information of ligand-protein interactions
In an attempt to bring 3D protein structure information directly

into generative molecule creation rather than by post-generation

docking, a high-quality target family sequence alignment was

leveraged to identify binding site residues across the kinase fam-

ily and train 1D string representation of the PaccMann model.60

The quantitative structure-activity relationship (QSAR) model

built with this reduced dataset outperformed the QSAR model

built with the conventional full-sequence approach, and the mol-

ecules created with the generative model were likewise encour-

aging in terms of their similarity to validated kinase inhibitors.61

APPLICATIONS IN MACROMOLECULAR DRUG DESIGN

In addition to designing small molecules, the application of AI

has been extended to the design of medicinal macromolecules,

such as designing antimicrobial peptides (AMPs), therapeutic

proteins, and CRISPR-Cas9 systems design and optimization,

as detailed below.

AMP generation
The emergence of antibiotic-resistant bacteria led to nearly 1

million deaths worldwide each year from bacterial infections

that cannot be treatedwith ordinary antibiotics.62 AMPs increase

the repertoire and deep generative models are a promising way
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of designing them. Das et al. augmented a variant of VAE (Was-

serstein Autoencoder)63 with molecular dynamics information to

generate AMPswith broad-spectrum potency and low toxicity.64

For a controlled sequence generation, linear binary classifiers

conditional latent (attribute) space sampling (CLaSS) for attribute

prediction was trained on the latent space, and then rejected

sampling was utilized for screening the molecules of interest.

CLaSS can be trained for binary classification of antimicrobial

function, broad-spectrum efficacy, presence of secondary

structures, and toxicity at the same time. Within 48 days, two

new antimicrobial peptides with high potency against Gram+

and Gram� bacteria were synthesized and tested in vitro and

in mice. Both resulted in low resistance in Escherichia coli and

low toxicity. Another example of antibiotic discovery emerged

from combining the message-passing approach and experi-

mental assays to predict the growth inhibition of E. coli followed

by screening an existing compound library to identify molecules

with antimicrobial activity and different structures from known

antibiotics.9 In the message-passing approach, the processors

execute a task independently and communicate data between

them by exchanging messages.

Therapeutic protein generation
De novo protein design plays important roles in protein thera-

pies. For instance, a de novo design strategy was proposed to

produce rapidly and accurately decoy proteins by replicating

the protein interface of human angiotensin I-converting enzyme

2 (hACE2) for a potential treatment of coronavirus disease

2019 (COVID-19).65 Deep generative models can also be used

to design protein therapies by modeling the spatial properties

of the amino acid sequence. ProteinGAN,66 which incorporated

a self-attention mechanism into GAN and learned the evolu-

tionary relationships of protein sequences, was a generalizable

framework to generate protein sequences with specific func-

tions. About 24% of the generated sequences were soluble

and showed activity comparable with the wild types, including

some highly mutated sequences. The generated sequences

include 119 novel structural sequence motifs, not present in

the training dataset, showcasing de novo generation of func-

tional proteins for therapeutic development.

CRISPR-Cas9 systems design and optimization
The CRISPR-Cas9 system, consisting of a Cas9 nuclease and a

guide RNA (gRNA), is a technology for genome editing and a tool

to identify targets in drug discovery (Figure 1A). Based on the

principle of complementary base pairing, gRNA guides Cas pro-

tein localization to the genome and CRISPR KO (knockout).

CRISPRi (interference) and CRISPRa (activation) technologies

then determine whether the candidate genes are the key to dis-

ease and thus a therapeutic target. The selection of gRNA se-

quences affects knockout efficacy and is essential for target

identification. Recent studies have demonstrated the power of

deep learning algorithms, such as CNNs and RNNs, to design

and optimize CRISPR-Cas9 systems. Recently, Chuai et al. pro-

posed a design tool called DeepCRISPR for gRNA with high

sensitivity and specificity, which adopts a combination of unsu-

pervised and supervised CNNs to learn the representations of

gRNAs.67 DeepCRISPR can predict on-target knockout efficacy

and off-target profile in the same framework. In addition, it auto-

matically detects important features of optimized gRNAs to pro-

mote effective CRISPR design. SpCas9 genome editing tools68

can address the off-target issue. A DeepHF model, which com-

bined RNNs with the secondary structure, GC content, and ther-

modynamics features was developed, but could not be automat-

ically obtained by RNNs.69 Although deep learning models have

conveniently facilitated CRISPR-Cas9 systems design, these

data-driven approaches are subject to the problems of data het-

erogeneity, sparsity, and imbalance.67 CRISPR-Cas9 systems

design can be further optimized using advanced algorithms

with higher-quality data.

OUTSTANDING QUESTIONS, PERSPECTIVE, AND
FUTURE DIRECTION

Despite the enthusiasm for AI-enabled drug discovery, ques-

tions and challenges abound. For decades, translational science

has been facing the challenge of how to translate research find-

ings into a novel, more effective medicine.70 In fact, the ‘‘ultimate

goal of the translational challenge is to eliminate the Valley of

Death, through scientific understanding and innovation.’’71

Most machine learning models in the drug discovery pipeline

require large volumes of data for training and validation, particu-

larly deep learning models.72 The lack of adequate quality and

robust data-sharing practices remain critical barriers for ma-

chine learning models to positively impact drug discovery.73

Inadequate data quality can lead to models that have poor

generalizability. Data harmonization, which improves the data

quality and utilization via domain knowledge and machine

learning techniques, plays a crucial role in the development

and application of drug discovery.74 Here, we briefly discuss

several challenges and potential future directions as follows.

Interpretable generative models
While generative models and other deep learning-based ap-

proaches offer great potential, they are often essentially ‘‘black

boxes’’ that require objective algorithmic interpretation of the

predictions to provide confidence and actionability. Drug discov-

ery is a highly complex process involving interactions between

compounds and targets and interconnected biological systems.

Current deep generative models are limited to capturing shallow

statistical correlations of the data, which cannot explain mecha-

nisms and results, possibly misleading decisions. Thus, model

users must understand how the algorithms are constructed,

which data they rely on, and to what extent the models are reli-

able. It is also important for AI scientists to involve biologists

and clinicians in experimental design and data interpretation.

Models should be made interpretable.75 One way is to perturb

the input or parameters in themodel and observe how the results

change. For example, controllable molecular generation can be

achieved by disentanglement, which decomposes the latent

space into interpretable and independent factors that corre-

spond to each property,76 such as bioactivity and synthesizabil-

ity. In this way, molecules with desired properties can be gener-

ated. Another solution can be displaying more semantic

information from the algorithm to explain the causality of the re-

sults. The reasoning of relationships between molecular
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structures and drug-like properties may guide the construction

of causal graphs followed by molecule generation. Models can

also be made transparent. Algorithms rationalize their prediction

processes in a way that a human can understand. A hierarchical

generative model may better trace each step back to previous

levels, allowing for human-computer interaction to achieve tar-

geted optimization.77

Few-shot generative models
Current AI techniques rely on learning from large amounts of

data. However, the available data are often quantitatively imbal-

anced due to, e.g., privacy, security, ethics,78 or a small number

of patients suffering from rare diseases, leading to little clinical

data about the toxicity and poor bioactivity. Such situations

could be alleviated by machines that learn from few samples.

Combined with past knowledge, they can achieve good perfor-

mance. Here, we highlight strategies to address insufficient data.

Starting from the source is the intuitive way to solve problems.

Increasing the sample size can be achieved through data

augmentation. Some approaches change the starting atom

and the branching order in SMILES to enrich the data, taking

advantage of the non-uniqueness of SMILES sequences for a

structure.79 Graph-based data can be varied by adding or

removing edges using appropriate strategies,80 such as 3D con-

formations.81 This can be compounded by information at

different granularity (e.g., atomic, pharmacophore, and toxico-

phore levels).

Insufficient training data of specific targets is inevitable in de

novo molecular generation, especially for peptide or protein

design. Transfer learning aims to transfer knowledge learned

from one domain to a target domain related to the source

domain, as solving data scarcity of the target domain.82 Transfer

learning drives molecule generation toward desired properties

commonly in a fine-tuning manner from a pre-trained model.83

The parameters obtained from the pre-trained model serve as

the initialization of the specific task.

If no bioactive molecules are available, zero-shot learning,

where a model can learn to recognize effects, or conditions,

that were not observed, can be employed. Zero-shot learning re-

quires more knowledge and alleviates the dependence on data.

In rare diseases or orphan targets, learning compound-target in-

teractions from big datasets, such as ChEMBL,12 and designing

molecules through disease-related targets instead of fitting mo-

lecular distributions, builds on ‘‘understanding the drug-target

interactions.’’

Considering that AlphaFold has uncovered 98.5% of human

protein structures,84 the target-based molecule generation can

be converted into a classical image captioning problem. For

example, image is the distance map (or 3D image) for a protein

and captioning is the molecular SMILES code to be generated.

In this configuration, target-based molecule generation can

generally be handled with pipelines composed of a target visual

encoder and a language model for SMILES generation.

Multimodal generative models
The promise of successful drug discovery lies in the diversity of

multiple data modalities that offer complementary perspectives

and enable triangulating the evidence for discovery.85 Deep

generative models using multimodal data may have significant

advantages over unimodal counterparts since the multimodal

data contain complementary insights.77 Current studies usually

focus on the molecular structural data, and do not fully use other

data modalities, such as drug-target interactions, drug-disease

knowledge, and relevant gene expression in specific cells

following drug treatment (Figure 4A). Therefore, how to make

full use of diverse and heterogeneous biological data is a matter

worth discussing. There are multiple possible solutions to this

challenge. First is ‘‘modality alignment,’’ which means connect-

ing all modalities with an intermediate modality. Because estab-

lishing relationships with molecular structures is easier, the

structure modality is chosen as the intermediary to other modal-

ities, such as drug-induced gene expression. We then connect

the structure modality with other modalities and finally align all

modalities in the middle space. ‘‘Modality fusion,’’ which drops

the median modality converter, is another possibility. All modal-

ities are directly mapped to a common latent space and

indicated by a hybrid representation (Figure 4A). Different modal-

ities describing the same molecules should be closer in the mo-

dality-shared space, while the samemodalities reflecting diverse

molecules should be farther apart.

The above discussion is based on training data with sufficient

and complete modalities, but the reality often does not satisfy

such assumptions. To further exploit these partial data, we

need to consider how to complement the missing modality.

One possible way is to generate synthetic modalities through es-

tablished relationships between modalities covering biological

activities and pharmacokinetics and pharmacodynamics prop-

erties of molecules (Figure 4B). There is an urgent need to seek

ways to integrate multimodal information that can generate mol-

ecules meaningfully to speed up the process of drug discovery.

Generative models from data consumer to data
producer
Unprecedented provision of data is pivotal to boosting data-

driven drug discovery, in addition to the emergence of deep-

learning algorithms and advances in high-performance compu-

tations based on the graphics processing unit. Pharmaceutical

companies possess vast amounts of labeled data associated

with their �2–3M proprietary molecules and generated from

the assays routinely run to support lead optimization. In addition,

unlabeled data can be used for training as can computationally

generated data such as from docking or molecular dynamics

trajectories.86

The quantity of high-quality data87 alone does not guarantee

actionable decisions in drug discovery.88 For example,

leveraging a deep learning algorithm, AlphaFold predicts the

3D structure of proteins from their amino acid sequences and

multi-sequence alignments with superior performance.30 Yet

critical details of the sites of molecular recognition, the active

site for ligand binding or quaternary structure for protein-protein

interaction, both vital for structure-based therapeutics design,

remain unresolved. The affinity of the drug to the protein versus

that of the substrate (or cofactor) determines its effectiveness.

Yet, thermodynamic and dynamic properties are even farther

from being routinely deployed in deep-learning models for drug

design, despite their recognized importance. Free energy
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calculations are frequently applied in lead optimization with a

manageable size (>�100 s) of molecules, and, recently, pro-

tein-ligand binding kinetics have attracted attention in medicinal

chemistry. However, the protein-ligand binding/unbinding dy-

namics is impractical to observe even in a long trajectory

(�ms) from conventional molecular dynamics due to transition

states separated by high energy barriers, thus locking the sys-

tem in configuration around its initial state, lacking conforma-

tional sampling.89

In this regard, a considerable effort employing deep-learning

methods has been focused on enhanced samplings for extract-

ing the free energy surface and kinetics, computing thermody-

namics variables, constructing coarse-grained models, and

generative modeling for molecular structure sampling.90 For

A

B

Figure 4. A proposed multimodal generative model in the drug discovery applications

(A) A hybrid data model can fully capture diverse information during drug design, including chemical, drug-target interactions, drug-disease knowledge, and

disease-relevant expression of target (protein/gene).

(B) A multimodal generative model can consider various drug discovery pipeline components to increase likelihood of success of clinical trials. ADME-Tox,

absorption, distribution, metabolism, and excretion-toxicity; IC50, half-maximal inhibitory concentration.
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example, a VAE-based generative network was employed to

learn low-dimensional, non-linear embeddings by reconstruct-

ing time-lagged conformations, revealing the slow dynamics

from the stochastic protein motions.91 With a modified VAE in

another example, weighted reaction coordinates optimized by

maximizing a predictive information bottleneck framework can

efficiently guide a biased simulation for capturing rare events in

a short trajectory as well as calculating free energy and

kinetics.92

Generative networks combined with molecular simulations

solidly rooted in physics, could provide not only meaningful in-

sights but also an invaluable framework for producing statisti-

cally reliable protein dynamics data for drug discovery,

including COVID-19.93 Still, in its infancy, it poses open ques-

tions, including some related to applications of generative

modeling, e.g., accurate and efficient force field parameteriza-

tion, enhanced sampling for kinetic modeling, and scalable

generative modeling for a biological system. While current

drug discovery is primarily devoted to small-molecule systems

due to the data of proteins is severely limited, once the protein

conformational dynamics data become more feasible, drug

design would be driven toward enhanced safety and

effectivity.

Conclusions and outlook
Drug discovery platforms are becoming increasingly industrial-

ized with the ability to both consume and generate big data using

AI to drive new molecule design.94 Ageing,95,96 Alzheimer’s

disease,97,98 COVID-19,6,65,93 antimicrobial resistance,9 and de-

velopments assisting the diagnosis and therapeutics of the

COVID-19 pandemic6,99–101 provide examples. These suc-

cesses encourage us to embrace the challenges in further opti-

mization and validation of AI approaches inmedical applications.

Increased enterprise architecture and infrastructure, including

exascale computing,102 quantum computers,103,104 hardware,

and connectivity, are a priority in drug discovery data strategies

in industries, academia, and governments. Strong data steward-

ship practices enable the realization of interoperability and

adherence to standards. Three rules have been highly

recommended:

1. Data stewardship must ensure that data ownership rights

(which lays the groundwork for data-sharing models) are

operationalized and considered for data acquisition, use,

and distribution practices.

2. Representative data (including diverse chemical and

target coverage) is critical to ensuring the absence of

data biases to allow deep learning models to cover a

wide range of applications.

3. Big data’s volume, variety, velocity, and veracity (4Vs)

require automated and rigorous data harmonization and

validation.

Data harmonization and validation from diverse biological

endpoints and different assays can ensure data quality

(completeness, consistency, integrity, fairness, and transpar-

ency) and data accuracy. In addition, advanced data-sharing

and model-learning strategies, such as swarm learning105,106

and federated learning,74,107,108 will accelerate data sharing

among industries, academics, governments, and health care

systems for drug development. For example, a recent platform

called collaborative Profile-QSAR74 developed collaborative

models from previously reported biological assays to broaden

the domain of applicability without sharing any of the training

data, offering a way to address data scarcity.

In summary, recent advances triggered by the rapidly growing

deep generative molecular design have brought newmomentum

for drug discovery, including the production and optimization of

small molecules andmacromolecules. However, the bottlenecks

of AI technologies, such as lack of or limited interpretability of the

model, inaccessibility, and lack of availability of high-quality

data, currently restrict their application and affect their perfor-

mance. There is a critical need to further develop and evaluate

intelligent generative models in realistic real-world drug discov-

ery contexts in order for deep learning to reach its full potential.

Under such developments, the intelligent generative model par-

adigms will have the potential to transform from theoretical

research to practical generation of therapeutics and provide

easy-to-use toolkits for chemists and chemistry modelers in their

daily work.
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79. Arús-Pous, J., Johansson, S.V., Prykhodko, O., Bjerrum, E.J., Tyrchan,

C., Reymond, J.L., Chen, H., and Engkvist, O. (2019). Randomized

SMILES strings improve the quality of molecular generative models.

J. Cheminform. 11, 71.

80. Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., and Shah, N. (2021).

Data augmentation for graph neural networks. Proc. AAAI Conf. Artif. In-

tell. 35, 11015–11023.

81. Hemmerich, J., Asilar, E., and Ecker, G.F. (2020). COVER: conformational

oversampling as data augmentation for molecules. J. Cheminform. 12, 18.

82. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q.

(2021). A comprehensive survey on transfer learning. Proc. IEEE 109,

43–76.

83. Segler, M.H.S., Kogej, T., Tyrchan, C., and Waller, M.P. (2018). Gener-

ating focused molecule libraries for drug discovery with recurrent neural

networks. ACS Cent. Sci. 4, 120–131.

84. Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., �Zı́dek, A.,

Bridgland, A., Cowie, A., Meyer, C., Laydon, A., et al. (2021). Highly ac-

curate protein structure prediction for the human proteome. Nature

596, 590–596.

85. Luo, Y., Eran, A., Palmer, N., Avillach, P., Levy-Moonshine, A., Szolovits,

P., and Kohane, I.S. (2020). A multidimensional precision medicine

approach identifies an autism subtype characterized by dyslipidemia.

Nat. Med. 26, 1375–1379.

86. Bayarri, G., Hospital, A., and Orozco, M. (2021). 3dRS, a web-based tool

to share interactive representations of 3D biomolecular structures and

molecular dynamics trajectories. Front. Mol. Biosci. 8, 726232.

87. Nigam, A., Pollice, R., Hurley, M.F.D., Hickman, R.J., Aldeghi, M., Yoshi-

kawa, N., Chithrananda, S., Voelz, V.A., and Aspuru-Guzik, A. (2021). As-

signing confidence to molecular property prediction. Expert Opin. Drug

Discov. 16, 1009–1023.

88. Bender, A., and Cortés-Ciriano, I. (2021). Artificial intelligence in drug dis-

covery: what is realistic, what are illusions? Part 1: ways to make an

impact, and why we are not there yet. Drug Discov. Today 26, 511–524.

89. Allison, J.R. (2020). Computational methods for exploring protein confor-

mations. Biochem. Soc. Trans. 48, 1707–1724.
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SUMMARY

Machine learning (ML) is increasingly used in clinical oncology to diagnose cancers, predict patient out-
comes, and inform treatment planning. Here, we review recent applications of ML across the clinical
oncology workflow. We review how these techniques are applied to medical imaging and to molecular
data obtained from liquid and solid tumor biopsies for cancer diagnosis, prognosis, and treatment design.
We discuss key considerations in developing ML for the distinct challenges posed by imaging and molecular
data. Finally, we examine ML models approved for cancer-related patient usage by regulatory agencies and
discuss approaches to improve the clinical usefulness of ML.

INTRODUCTION

In the past decade, machine learning (ML) has seen an explosion

of applications in medicine, particularly within oncology.1 As a

set of complex, heterogeneous, and prevalent diseases, cancers

provide both a challenging set of diagnostic problems and

copious data in multiple modalities.2 This makes clinical

oncology a promising field for ML, which utilizes data to learn

patterns and the structure of a dataset (see machine learning

primer section for a brief introduction to ML). In particular, rich

imaging and molecular data have spurred the application of

ML to correlate these data sources with early cancer detection,

monitoring of cancer progression, and identification of optimized

therapeutic treatment.

Medical imaging has been a powerful tool that has revolution-

ized cancer diagnostics. In particular, medical imaging enables

non-invasive, cheap, and scalable detection, localization, and

monitoring of cancer. Radiology images, as well as other image

modalities like skin images or colonoscopy videos, are used for

screening and diagnosis.3 Pathology images of tissue samples

are used to confirm a cancer diagnosis and determine prog-

nostic factors such as cancer subtype.4 Both radiology and pa-

thology images can guide treatment by informing the selection of

chemotherapy or immunotherapy and aiding radiotherapy plan-

ning.5 Asmedical imaging is increasingly fundamental to the clin-

ical oncology workflow, the quantity of imaging data is often

growing faster than clinicians can handle.3 This leads to a desire

for automated methods of processing medical images to reduce

clinician workload, accelerate the analysis of time-sensitive

images, and mitigate clinician errors. Advances in ML for com-

puter vision have been adapted for medical imaging and are

already showing great promise for rapidly and accurately

analyzing a variety of imaging modalities in clinical oncology.6,7

Although imaging informs many aspects of cancer care, mo-

lecular characterization can provide a more fine-grained view

of a patient’s cancer status.8 This is particularly important as

cancer therapeutics become increasingly targeted and mecha-

nistic.9 Liquid biopsies, which measure molecular biomarkers

present in non-invasive physiology samples such as blood or

urine, have emerged as a promising approach to profiling tumor

states for cancer diagnostics. Liquid and solid tumor biopsies

also make it possible to serially profile tumor status and identify

characteristics of tumor evolution and heterogeneity that are

associated with resistance to therapies, recurrence, and poor

survival outcomes.10 Due to the wealth of information provided

by liquid biopsies and solid tumor biopsies, ML has been instru-

mental in predicting clinical outcomes and cancer status from

rich molecular features.

In this review, we explore recent advances in ML applied to

clinical oncology. We focus on relatively matureML technologies

already deployed or close to deployment in clinical settings.

There is a large body of exciting development of ML for more

basic cancer research and drug discovery that we do not cover

here. Because imaging and molecular data are two major data

modalities in clinical oncology with distinct ML challenges, we

structure the review to discuss imaging ML and molecular ML

separately. For each modality, we discuss both the major appli-

cations of ML and the types of ML models and techniques that
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are frequently used. As many of these ML models are moving

from lab to clinic, we also review the regulatory process for

approving ML methods for cancer diagnostics. We highlight ex-

amples of recently approved ML-based devices in this category

and discuss the clinical studies necessary to obtain approval.

We then discuss how to improve ML model design and evalua-

tion in order to build trust in cancer-related ML and further clin-

ical adoption. Finally, we outline emerging technologies, both

in medicine and ML, that are promising directions for future

research in clinical oncology.

MACHINE LEARNING PRIMER

ML aims to solve tasks by learning patterns from data rather

than using hand-coded rules.4 An ML model is trained to

perform a task by showing it several examples of input data

(e.g., mammograms) and corresponding output labels (e.g.,

cancer or no cancer) and updating the internal parameters of

the model accordingly to make its predictions more accurate.

Model evaluation on external test data, which comes from an

entirely different source than the training and internal test

data (e.g., a different hospital or patient population), is particu-

larly valuable to determine the model’s generalizability across

diverse settings. While most ML methods for cancer are a

form of supervised learning, where each data point has an

associated label, unsupervised learning methods such as clus-

tering and dimensionality reduction can produce relevant in-

sights into unlabeled data.7

Traditional ML vs. deep learning
Traditional ML algorithms take a wide variety of forms, with most

designed to work with tabular data, where each data point has a

set of explicit features (e.g., patient age or gene mutation status)

that are used to predict the label.3 One common algorithm is

called a random forest, which consists of a set of decision trees,

each of which is constructed based on the training data to make

a series of binary decisions about the input features that culmi-

nates in a prediction of the label of the data point. Another algo-

rithm is the support vector machine (SVM), which learns a line (or

hyperplane in multiple dimensions) in the coordinate system

defined by the input features to separate the data points into

two classes. Regression models learn a linear combination of

input features that predict either continuous labels (e.g., linear

regression) or binary labels (e.g., logistic regression).

With the increasing availability and power of graphics pro-

cessing units (GPUs), a subfield of machine learning called

deep learning (DL) has overtaken traditional ML for many predic-

tion tasks.3 The core component of DL models is a neural

network, which consists of one or more layers of units called

neurons that compute weighted sums of inputs followed by

applying a nonlinear function. These layers of neurons thus

compute a representation of the input called an embedding,

which is then used by the final layer of neurons tomake an output

prediction. The DL models are more flexible compared to

traditional ML models, and because DL relies less on feature

engineering, they are capable of processing a wider variety of

unstructured data types including images, text, and speech.

However, DL models typically require significantly more training

data, so traditional ML models can still be useful, particularly for

data-limited or tabular tasks.2

In order to process non-tabular data, the architecture of a

neural network (e.g., number of neurons or layers or connections

between neurons) is modified to fit the desired data type.2 Con-

volutional neural networks (CNNs) are primarily designed for pro-

cessing images. Graph neural networks (GNNs) handle graph

data, such as cell-cell interaction graphs. Recurrent neural net-

works (RNNs) and transformers analyze sequential data, such

as genetic sequences or series of images. Each of these classes

of models has many specific model architectures, such as

ResNet or U-Net for CNNs and LSTM or GRU for RNNs. The

models are optimized with stochastic gradient descent. Figure 1

illustrates common traditional ML and DL models.

Both traditional ML and DL models require that the data is

cleaned (e.g., modifying data with missing features or extreme

values) in order to learn effectively.4 Additionally, the input fea-

tures must be amenable to the type of model. For example, neu-

ral networks use vectors of real numbers as input, so categorical

features such as cancer type are typically converted to one-hot

vectors with all zeros except for a single one in a position that in-

dicates the appropriate category. Many traditional ML methods

are available in the scikit-learn package, while deep learning

models can be built using packages such as PyTorch and

TensorFlow. Because ML models often require tuning hyper-

parameters to obtain optimal performance, it is important that

a validation dataset be used during this step that is distinct

from the held-out test dataset, which is only evaluated after

the final hyperparameters have been chosen.

Training techniques
One common technique is transfer learning, where a model is

first trained on a large dataset that is somewhat related to the

task of interest (pre-training) before being trained on a smaller

dataset consisting of the actual task of interest (fine-tuning).3

For example, image-based cancer detection models are often

pre-trained on large object detection datasets, enabling the

model to recognize general shapes, and are then fine-tuned on

small cancer detection image datasets. Transfer learning is

more useful when the pre-training data are similar to the data

of interest. Another common method is data augmentation,

where input data are modified (e.g., images are rotated or

blurred) to artificially expand the training set andmake themodel

more robust to noise that might appear in real-world data.7 Reg-

ularization is a technique that controls the size of the parameters

of a model to prevent overfitting and encourage sparse feature

usage.2 Weak supervision involves using data with limited or

noisy label information.7 A common type of weak supervision

is multiple instance learning, in which labeled data points (e.g.,

images with cancer/no cancer labels) are broken down into

smaller pieces (e.g., image tiles) that are easier for an ML model

to process. The model makes predictions on each piece of the

data separately, and those predictions are then aggregated to

form a prediction for the whole data point. Finally, interpretability

is a set of methods that aim to explain why a model is making a

certain prediction.6 For example, an image-based model might

highlight regions of an image that led themodel to diagnose a pa-

tient with cancer.
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MACHINE LEARNING FOR IMAGE-BASED CANCER
DIAGNOSIS, PROGNOSIS, AND TREATMENT

In this section, we highlight applications of image-based ML

throughout the clinical workflow for cancer. Early ML ap-

proaches used hand-crafted image features such as tumor

shape or textural heterogeneity that were computationally ex-

tracted from images.6 These features were used as inputs to a

traditional ML model, such as a support vector machine (SVM)

or random forest, to make a clinical prediction. Starting in the

early 2010s, a class of ML models called deep learning (DL)

models began to take hold as the dominant ML method.12 DL

models automatically learn features from an image to make clin-

ical predictions, thereby simultaneously reducing the need for

painstakingly crafting image features while significantly outper-

forming feature-based ML models.3,4 These models can be

applied to virtually any medical imaging modality, including

X-ray13 and MRI for radiology,14 H&E stains for pathology,15 im-

ages of skin lesions for dermatology,16 and videos of colonos-

copies for gastroenterology.17 Here, we discuss examples of

ML—primarily DL—applied to three clinical stages: risk stratifi-

cation, diagnosis, and prognosis and treatment planning.

Figure 2 illustrates the general image-based ML model pipeline

and each of the three clinical stages. Although we discuss

each stage separately, it is worth noting that some ML methods

make predictions that cross these boundaries, such as simulta-

neous diagnosis and prognosis via pathology images.18

Risk stratification
Understanding a patient’s risk of developing cancer is important

for early cancer detection and effective treatment. Often, cancer

risk is evaluated based on a patient’s demographics, family

Figure 1. Common machine learning models
(A) A random forest model builds decision trees that make predictions based on a series of binary decisions about the input features.
(B) A support vector machine (SVM) learns a line (or hyperplane in many dimensions) in feature space that separates two classes of data points with the largest
possible margin between the two classes.
(C) A regression model uses a linear combination of input features to predict either continuous labels (linear regression) or binary labels (logistic regression).
(D) A neural network consists of multiple layers of neurons that iteratively compute linear combinations of inputs followed by a nonlinear function to predict
outcomes such as the probability of cancer.
(E) An RNN processes sequential data, such as genetic sequences or a series of images, by applying the same neural network layers to each object in the
sequence and maintaining a memory of the objects it has seen.
(F) A CNN applies patches of neurons called filters that scan an image for patterns. Early layers identify low-level features like edges, while later layers identify
high-level features such as tumor morphology.
(G) A transformer analyzes sequential data by repeatedly applying an operation called attention to compare each element in the sequence to all the other elements
in order to update its internal representation of the sequence.
(H) A GNN is designed for graph-structured data such as a graph of neighboring cells. It first encodes basic features of each node and edge in the graph, and then
neural network layers pass information across the graph to update the node and edge representations, which are then used to predict the label of the graph. Each
of these general classes of models has many specific architectures with different numbers and sizes of layers of neurons.
Image sources: histology.11
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history, and genetics, but imaging can also reveal patient

characteristics that might increase cancer risk. Existing work

on image-based cancer risk prediction falls into two categories:

predicting characteristics associated with cancer risk and

directly predicting cancer risk itself.

Risk proxies

A typical example of a characteristic associated with cancer risk

is breast density in breast cancer. Breast density is correlated

with increased risk of cancer development andmissed detection

on mammography and therefore indicates who may benefit from

additional screening.21 To improve breast density assessment

with DL, Lehman et al. trained a ResNet-18 CNNmodel onmam-

mograms to predict breast density categories routinely evalu-

ated in clinical practice.21 The model showed a high level of

agreement with a panel of five radiologists on a held-out test

set of images. Furthermore, the DL model was implemented in

clinical practice, and radiologists accepted the binary density

predictions of the model 94% of the time. The model was addi-

tionally validated at an external site and showed the potential to

increase the consistency of breast density evaluations by radiol-

ogists at different sites.22

Risk prediction

More often than quantifying risk proxies, DL is used to directly

predict cancer risk. For example, DL models are often trained

to use images from a screening mammogram to predict whether

a patient will develop cancer at some point.23 Dembrower et al.

highlight the benefit of this direct approach to risk prediction, as

they showed that a breast cancer risk score produced by an

Inception-ResNet-v2 CNN model was more accurate than using

clinical breast density assessments to predict risk.24 Yala et al.

developed a DL model on mammograms that could better pre-

dict the likelihood that a woman would develop breast cancer

within five years than the well-established Tyrer-Cuzick risk

model, which is based on clinical features such as patient

age.25 Their method consisted of a ResNet-18 model to process

each of the four standard mammogram views, followed by a

transformer network that aggregated the view embeddings into

a single mammogram embedding. This embedding was used

to predict known risk factors, a baseline cancer risk score, and

a hazard score for additional risk in future years. They also

used a conditional-adversarial training scheme to make the

model invariant to the mammogram device to ensure consistent

risk assessments across devices. The authors later validated

their model on test sets from seven hospitals across five coun-

tries, demonstrating the generalizability of the model across

diverse patient populations and screening centers.26 Ha et al.

designed a CNN model that predicts risk not only at the image

level but also at the pixel level, meaning that each risk prediction

score comes with a heatmap on the image indicating the regions

where cancer is most likely to develop.27 Although most studies

have focused on risk stratification for breast cancer, ML has also

been used for predicting lung cancer risk from chest X-rays with

CNNs13 and for predicting prostate cancer risk from MRIs, with

support vector machines applied to hand-crafted radiomics

features.14

These methods aim to personalize cancer screening by

providing a risk score to a physician, who is then responsible

for determining an appropriate screening frequency for the pa-

tient. However, since standard, non-ML risk scores are relatively

coarse-grained and imprecise, current guidelines place patients

in large groups based on high or low risk and suggest the same

screening schedule for all patients in a group, rather than adapt-

ing the screening frequency uniquely for each patient.28 Yala

et al. demonstrated that reinforcement learning, an area of ma-

chine learning that involves deciding which actions to take to

maximize a reward, can be used in conjunction with DL risk pre-

diction models to automatically design an optimal screening

schedule for each patient individually.28 These individual

screening schedules significantly improved simulated early

detection rates per screening mammogram compared to stan-

dard clinical guidelines.

Diagnosis
Diagnosing cancer typically involves two steps. First, either in the

course of routine screening or in response to symptoms, patients

undergo non-invasive imaging such as radiological scans. Sec-

ond, if these images reveal suspicious regions of tissue that

might indicate cancer, a biopsy is then taken and sent to a pa-

thology lab, which can confirm the diagnosis with the help of his-

tological imaging. ML can improve the diagnostic accuracy of

both of these steps by identifying patterns—both known and un-

known to clinicians—that indicate the presence or absence

of cancer. ML also provides a consistent and detailed image

evaluation that can catch cancers missed by time-constrained

physicians, which is particularly crucial in radiology for early

detection.

Non-invasive imaging

Detecting signs of cancer via ML applied to radiological or other

non-invasive imaging has garnered substantial attention and

excitement due to the abundance of data and the success of

Figure 2. Machine learning for image-based cancer diagnosis, prognosis, and treatment
(A) An illustration of the general ML model pipeline for image-based cancer prediction tasks, along with key considerations at each step. For each patient in a
patient population, an image is captured from radiology, pathology, or another imaging modality. Often, the image is high resolution and is broken down into
image tiles—either covering the full image or only ROIs—that are small enough for anMLmodel to process. AnMLmodel processes each image tile, producing an
embedding of the tile or a tile-level or pixel-level prediction. The tile outputs are aggregated into a single output using either a formula or an ML model such as an
RNN. A final prediction component, such as a neural network, uses the combined tile output to predict the label, and metrics evaluate the model predictions.
Labels may come from different sources (e.g., radiology or biopsy) and can have different types (e.g., binary for classification or real-valued for regression).
(B) The clinical stages of image-based ML predictions for cancer and simplified examples of ML methods for each stage.
Risk Stratification: For certain cancers such as breast cancer, healthy patients regularly undergo radiological screening to assess the patient’s risk of developing
cancer and prioritize future screening.
Diagnosis: Radiology images are used to identify potentially cancerous lesions during routine screening or in response to symptoms. If cancer is suspected by
radiology, then a biopsy is taken, and pathology images are used to confirm the diagnosis.
Prognosis and Treatment Selection: Radiology or pathology images are further used to evaluate prognosis and select treatments.
Image sources: mammography,19 CT,20 histology.11
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ML methods, with several claiming to achieve physician-level

performance for cancer detection. These methods hold promise

to improve and standardize early detection of cancer, save phy-

sicians time, and expand access to high-quality cancer care to

patients in low-resource settings. Esteva et al. trained an Incep-

tion v3 CNN to classify skin cancer from images of skin lesions,

matching the performance of 21 dermatologists on biopsy-

proven clinical images.16 With the prevalence of smartphones,

skin lesion classification with DL could potentially be available

directly to patients.29 DL also has the potential to aid doctors

with diagnostic procedures such as colonoscopies by analyzing

live videos and highlighting suspicious regions of tissue in real-

time to guide the operation.17 In radiology, Ardila et al. developed

a 3D CNN for lung cancer screening with one component identi-

fying regions of interest (ROIs), another component processing

the entire image, and a final classification layer combining the

outputs of both components.30 If a prior CT scan is available,

the model extracts features from ROIs in both the current and

prior CT images. Their model was at least on par with six radiol-

ogists and reduced both false positive and false negative rates in

some situations. While many such methods were validated on

relatively small datasets from a single site, McKinney et al. built

a DL model for diagnosing breast cancer from mammograms

and evaluated their model on large datasets from the US and

the UK.31 They found that their model had superior performance

compared to six radiologists. They also demonstrated that in

many cases, they could replace a second reader, which is stan-

dard procedure in the UK, with their model’s prediction and

save 88% of the time of the second reader without sacrificing

performance.

Despite these successes, there has been debate about the

transparency, interpretability, reproducibility, and robustness

of some of these results.32 Most of these studies are retrospec-

tive, single-site, and compare ML performance post hoc to hu-

man performance rather than evaluating ML models in the way

they would be used in the clinic, as a system to assist human de-

cision making. Some recent studies have worked to address

these shortcomings to more convincingly demonstrate the

benefits of ML in cancer diagnosis. Qian et al. performed a pro-

spective, rather than retrospective, evaluation of a DL model us-

ing ultrasound to assess breast cancer.33 Kim et al. designed a

reader study in which radiologists evaluated mammograms

either with or without the aid of anMLmodel trained onmammo-

grams from five institutions in three countries.34 Radiologists

from multiple institutions had superior performance when work-

ing in conjunction with ML rather than alone. Hekler et al. had

dermatologists and an ML model separately evaluate skin im-

ages to detect cancer and then combined those predictions us-

ing a decision tree-based ML algorithm called XGBoost to

achieve performance superior to either method independently.35

Image-based deep learning has also been used in other ways

to aid preliminary cancer diagnosis. In Yala et al., a ResNet-18

model was built to triage mammograms by setting a high-sensi-

tivity prediction threshold so that nearly all predicted negative

caseswere truly negative.36 In a simulation study, these predicted

negative cases were skipped by radiologists, allowing radiolo-

gists to only read 80.7% of mammograms while maintaining

sensitivity and specificity across all cases. Instead of diagnosing

cases, Xu et al. built a CNN model to segment breast ultrasound

images into functional tissues to aid clinicians who interpret and

diagnose the images.37 Cao et al. designed a model that simulta-

neously diagnoses and grades prostate cancer at the pixel level

from multi-parametric MRI, leveraging the power of DL models

to move beyond cancer detection alone.38 A future direction is

integrating patient history and pertinent clinical presentation in im-

age-based DL models. Multimodal DL models have become

increasingly popular in healthcare applications, given the impor-

tance of clinical history in diagnosis. In one instance, Akselrod-

Ballin et al. trained a DL model to diagnose breast cancer from

mammograms that additionally incorporates information from

medical records, finding that it led to improved diagnostic accu-

racy over models that did not incorporate health records.39

Confirmation by pathology

Pathology samples, typically stained with hematoxylin and eosin

(H&E), are assessed by pathologists to confirm a preliminary

cancer diagnosis. Due to the large size of digital whole slide im-

ages of histopathology, DL models frequently use multiple

instance learning (MIL). In MIL, the DL model operates on small

image tiles and then aggregates individual tile-level embeddings

or predictions into a diagnostic prediction for the whole slide.40

Campanella et al. used MIL to train a DL model for prostate,

breast, and other cancers. The model could allow pathologists

to exclude 65–75% of slides while still identifying cancers with

100% sensitivity.41 This model has the potential to significantly

reduce the workload of pathologists, allowing them to spend

more time on difficult cases.

As with preliminary diagnosis via non-invasive imaging,

rigorous evaluations of DL-based pathology tools using multi-

site, prospective trials with DL-assisted pathologists are needed

to evaluate the clinical utility of these models. Several recent

works have performed studies with at least some of these

criteria, showing improved pathologist performance when assis-

ted by DLmodels that highlight ROIs of the image and/or provide

a diagnostic prediction.42,43

DL models sometimes predict more than a binary cancer

versus no cancer label in order to provide clinicians with addi-

tional diagnostic information. For example, in cases of cancer

of unknown primary origin, determining an appropriate diagnosis

and treatment plan requires inferring the origin of cancer. Lu et al.

trained a ResNet-50-based model on H&E images to identify a

tumor as primary or metastatic and predict its site of origin

across 18 different primary origins, with top-3 prediction accu-

racy on an external set exceeding 90%.15 The model incorpo-

rated attention after the CNN layers, which identified regions in

the slide of high diagnostic relevance and provided a form of hu-

man interpretability. Coudray et al. built an Inception v3 CNN

model for lung cancer to simultaneously diagnose cancer, deter-

mine the tumor subtype of positive cases, and predict the pres-

ence of six genetic mutations from H&E-stained images.18

Prognosis and treatment selection
After a cancer diagnosis, physicians and patients are interested

in determining the patient’s prognosis and selecting the optimal

treatment for that patient. Since both prognosis and treatment

selection depend on the characteristics of the cancer, many

ML methods indirectly aid prognosis and treatment selection
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by predicting tumor features such as cancer subtype or mutation

status. Other methods directly predict prognosis or guide treat-

ment selection by evaluating or planning potential treatments.

Below, we discuss both types of methods.

Tumor features

Prognosis and treatment selection are both informed by a num-

ber of tumor features that can be predicted by image-based ML

models. For example, ML models have been developed to pre-

dict the subtype or grade of a tumor, such as the Gleason grade

in prostate cancer,44 which gives physicians information about

patient survival and which treatments might be most effective.

Esteva et al. fuse information from both histology slides and clin-

ical data in a DL model that predicts the likelihood of 5- and

10-year metastasis, which can indicate more aggressive disease

that requires additional treatment.45 They pre-trained the image

portion of their DL model using a self-supervised technique

called momentum contrast, in which the model was trained to

identify whether two image tiles were augmented versions of

the same tile or were different tiles. Besides tumor subtype,

another goal is to predict the genetic characteristics of a tumor,

such asmicrosatellite instability,46 tumormutational burden,47 or

whole-genome duplication.48 Some studies use H&E images to

predict gene expression and assess survival-related tumor het-

erogeneity.49 Saltz et al. develop a deep learning-based compu-

tational stain that identifies tumor-infiltrating lymphocytes whose

spatial patterns are correlated with survival.50 Wang et al. use a

3D CNN to predict EGFR mutation status in lung adenocarci-

noma from ROIs selected manually from CT scans, thus

providing a non-invasive method of genotyping cancer and

informing potential treatments.51 When biopsy samples are

available, it is still more reliable to measure genotypes using mo-

lecular methods that we discuss in the next section.

Prognosis

A number of DL models have been developed to predict patient

survival from histology slides. Courtiol et al. provide an example

of this type of model and workflow for prognosis in mesotheli-

oma.52 First, they trained a U-Net CNN on several hundred

manually annotated histology images to perform tissue segmen-

tation. Next, they divided each patient’s whole slide histology im-

age into small image tiles and kept all the tiles that were pre-

dicted to contain at least 20% tissue according to the U-Net

model. Using transfer learning, they took a ResNet-50 CNN

pre-trained on an image recognition task called ImageNet and

used it to predict a score for each tile. The 10 highest and 10

lowest scores were passed to a neural network that predicts

the patient’s survival time. The ResNet-50 model and neural

network were trained together on 2,300 slides with a loss func-

tion based on the Cox proportional hazardsmodel. They demon-

strate that their model significantly outperforms simpler survival

prediction models that only use histological type or grade

without the image. Bychkov et al. instead predict survival for

colorectal cancer using all image tiles by applying an RNN to

aggregate the embeddings produced by a CNN model for

each tile.53 In contrast to methods using histology images, Xu

et al. take advantage of the fact that radiology is non-invasive

and can easily be repeated over time to develop a combined

CNN + RNN model that updates its survival predictions over

the course of treatment.54

Response to treatment

Predicting response to treatment, either prior to or during the

early stages of treatment, can aid physicians in selecting the

optimal treatment for a patient. Joo et al. developed a multi-

modal DL model to predict whether patients would achieve a

pathologic complete response after neoadjuvant chemotherapy

(NAC) for breast cancer.55 Their model made predictions by

fusing information from two different pretreatment MRIs, each

processed with a 3D ResNet model, and clinical information,

such as age and HER2 status, processed by a neural network.

Gu et al. also aimed to predict response to NAC in breast cancer,

but they applied DL models to pairs of ultrasonography images,

with one image taken before NAC and the other taken after

some, but not all, of the NAC treatments.56 Through a prospec-

tive study, they showed that their model could predict whether a

patient would respond to the full course of therapy, indicating

that it could be used to alter the course of treatment early for

those patients who are predicted not to respond. Tian et al. built

a model that extracts features fromCT images using a DenseNet

CNN and hand-crafted radiomics features, with a neural network

classifier processing the concatenation of both sets of features

to assess PD-L1 expression in non-small cell lung cancer.57

This enables a non-invasive prediction of response to anti-PD-

1 antibody immunotherapy. Lu et al. found that deep learning

could evaluate tumor morphological change in metastatic colo-

rectal cancer from CT scans, which may allow early adjustments

during treatment.58 Notably, this study used an RNN to combine

image features extracted by CNNs from CT scans at multiple

time points during treatment.

Radiotherapy planning

Planning radiotherapy is a time-consuming process that could

benefit from the speed of ML models. McIntosh et al. performed

a blinded, head-to-head study of human-generated and ML-

generated radiotherapy treatment plans for prostate cancer.5

ML-generated treatment plans were inferred from the treatment

plans of previous patients who were most similar to the current

patient according to a learned similarity metric based on

features extracted from CT images. In their prospective study of

50 patients, ML-generated plans were selected over human-

generated plans 61% of the time while reducing the radiotherapy

planning time by 60%, from amedian of 118 h to 47 h. Hosny et al.

built a U-Netmodel to segment primary non-small cell lung cancer

tumors and involved lymph nodes in CT images, which is a time-

consuming step in radiotherapy planning, with validation across

eight internal and external clinical sites in multiple countries.59 In

their study, AI assistance led to a 65% reduction in segmentation

time and a 32% reduction in variability between clinicians.

MACHINE LEARNING FOR MOLECULAR CANCER
DIAGNOSIS, PROGNOSIS, AND TREATMENT

Recent advances in sample processing, genomic sequencing,

and molecular technologies have generated rich datasets from

solid tumor biopsies and molecular liquid biopsies, which aim

to detect circulating cell-free tumor DNA (cfDNA). ML models

have played an instrumental role in mapping these datasets to

clinical outputs. We first give an overview of liquid biopsy

and solid tumor datasets and discuss how their unique
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characteristics influence the ML models utilized. We focus our

attention on how ML models have been applied for tertiary anal-

ysis of genomic datasets. We then give an overview of how ML

models have been applied to facilitate liquid biopsy-based and

solid tumor-based diagnosis, prognosis, and treatment selection

and tumor monitoring. These advancements, summarized in

Figure 3, have spurred a rapidly developing field that has

garnered tremendous clinical and commercial interest.

Characteristics and ML models for molecular datasets
Liquid and solid tumor biopsy data sequencing datasets share

several characteristics and challenges that guide the design of

MLmethods. First, dataset size is often limited. Each tumor sub-

type may only be represented by less than 50 samples.60 Given

the small number of samples per dataset, ML models tend to be

smaller and leverage careful feature engineering and domain

expertise.61 Ongoing initiatives, such as the Circulating Cell-

free Genome Atlas (CCGA), which has recruited 15,000 patients

from over 140 sites, will provide valuable new resources

that are multi-institutional and balanced in patient and clinical

demographics.62

The small sample challenge of liquid and solid tumor biopsy

datasets is amplified by the high-dimensional nature of the

data. Thus, applying ML to liquid and solid biopsy datasets re-

quires careful consideration of properly selecting features or

aggregating existing features for model training. Additionally,

high dimensionality warrants vigilance for overfitting to training

data.63 Here, regularization, which regularizes or pressures

model coefficients toward zero in order to encourage less com-

plex and flexible models that are less susceptible to overfitting,

Figure 3. Machine learning for molecular cancer diagnosis, prognosis, and treatment
(A) Common molecular datasets for molecular cancer diagnostics include circulating cell-free DNA (cfDNA), methylation status, and fragmentomics. Many
molecular datasets for cancer prognosis have been generated from whole-genome sequencing, single-cell transcriptomics, and bulk RNA sequencing of solid
tumor biopsies. Utilizing molecular datasets for cancer treatment prediction and selection is a rapidly developing field incorporating foundational molecular
technologies and emerging methods such as spatial omics. Example studies are given.
(B) Designs of common ML models for molecular data.
(C) Considerations of molecular data that inform the choice of ML model.
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have been helpful in mitigating problems that arise with high-

dimensional datasets. Common regularization methods that

have been used with molecular datasets include ridge, LASSO,

or elastic net.

Molecular datasets can also suffer from a low signal-to-noise

ratio stemming from difficulties in determining the veracity of de-

tected variants.64 Of note, circulating tumor DNA (ctDNA) typi-

cally comprises only 5%–10% (in late-stage disease) to less

than 0.01%–1.0% (in early-stage disease) of total circulating

cell-free DNA.64 The balance between wide coverage but low

sequencing depth versus high sequencing depth of a more

limited target is an important factor that affects the signal-to-

noise ratio.65 This tradeoff is further amplified when creating mo-

lecular datasets for ML applications. Targeted sequencing

panels can reduce noise; however, emerging work has demon-

strated that aggregation variants across the genome can

improve ML performance. Careful design of training datasets

for ML applications can help to mitigate some of the noisy data

limitations. Case-control designs—e.g., cases comprising pa-

tients with localized non-small cell lung cancer matched with

controls of risk-matched adults undergoing annual radiologic

screening for lung cancer—are a common strategy to reduce

confounders and improve signal.61

While DL has become the model of choice for numerous

genomic applications, the unique challenges of liquid and solid

tumor biopsy data have rendered DL models less directly appli-

cable. Moreover, inductive biases of popular DL architectures

(e.g., spatial invariance of CNNs) are less suitable for sequence

variants or gene expression. Rather, smaller models such as

regularized logistic regression,61 SVM,66 random forest classi-

fiers,67 and elastic nets68 are commonly used, and they utilize

domain expertise to design features.66

Applications of ML models to molecular tumor data
In this section, we review howML is facilitating the use of molec-

ular data for cancer diagnosis, prognosis, and treatment selec-

tion and tumor monitoring (Figure 3).

Cancer diagnosis

Early cancer detection is critical for timely interventions that can

improve patient outcomes. Liquid biopsy methods utilize de-

tected variants from a targeted sequencing panel to determine

the presence of cancer. While detected mutational burden can

be predictive, using mutational burden alone can be limited in

sensitivity, specificity, and power.61 Integrating additional vari-

ants and genomic features can increase predictive power. ML

models have been instrumental in classifying detected variants

as pathological, aggregating variants, and identifying variants

that are most predictive.

Models such as logistic regression69 and elastic net61 have

been used to integrate detected variants. For example, Lung-

CLiP (Cancer Likelihood in Plasma) employs an ensemble ML

classifier using nearest neighbor classifiers, naive Bayes, logistic

regression, and decision trees to determine the likelihood that a

plasma sample contains lung cancer ctDNA.61 While detecting

variant burden from cfDNA is promising, ascertaining the tissue

of origin of ctDNA is more challenging.

DNA methylation sequences have also been pursued as mo-

lecular predictors for early cancer detection. Changes to CpG

DNA methylation are one of the earliest molecular aberrations

in cancer initiation and offer enhanced capability to infer tissue

origin of ctDNA due to the presence of tissue-specific CpG

islands. A systematic evaluation of 10 ML classifiers with various

data inputs (whole-genome sequencing of cfDNA, targeted

cfDNA panels, and DNA methylation) using CCGA found that

classifiers that utilized whole-genome methylation sequences

had the highest cancer detection sensitivity and best prediction

of cancer signal origin.62

A central challenge in utilizing methylation sequences is deter-

mining which methylation features to select, given that there are

30 million CpG sites that can be methylated or unmethylated.

This can be tackled through ML methods that facilitate dimen-

sionality reduction or feature selection. Regularized regression,

such as elastic net, has been popular in feature selection for

methylation datasets.70 Maros et al. systematically compared

four ML classifiers (random forest, elastic net, SVM, and

boosted trees) in combination with post-processing algorithms

and found that elastic net delivers the best performance in

methylation-based cancer detection and classification.71 Grail

has utilized probability models, such as Bernoulli mixture

models, to determine the ranking of positive and negative

methylation features likely to distinguish cancer types from one

another or non-cancer.72

While previous liquid biopsy technologies have primarily uti-

lized cfDNA sequences or methylation status, the fragmentation

patterns of cfDNA, also called fragmentomics, can provide addi-

tional features to enhance ML cancer detection models. Several

studies have found that incorporating fragmentomics into their

classifier improved classifier performance.61,67 Similarly, Jam-

shidi et al. found that fragment length ML classifiers provided

similar sensitivity to a classifier based on genomic alterations.62

Improved performance could be attributed to additional epige-

netic or mechanistic information conveyed by fragmentomic

profiles that can increase predictive capability. For example,

Esfahani et al. utilized an elastic net model trained on fragmen-

tomics to infer gene expression, classify non-small cell lung can-

cer, and assess immunotherapy response.68

Cancer prognosis

While liquid biopsies hold the potential to revolutionize cancer di-

agnostics, solid tumor molecular analysis is currently more

mature and can provide high-resolutionmolecular and clinical in-

formation that can be leveraged to better characterize cancer

prognosis.

Advances in exome and whole-genome sequencing and bulk

and single-cell transcriptomic technology offer exciting opportu-

nities to characterize tumor origin, stage, and grade, which influ-

ence cancer prognosis. Determining tumor origin, particularly for

metastatic tumors, is an important aspect of cancer prognosis

that molecular ML models can facilitate. Random forest classi-

fiers have been a popular model of choice for predicting tumor

origin. For example, Nguyen et al. utilized an ensemble of binary

random forest classifiers trained on 6,756 whole-genome-

sequenced primary and metastatic tumors that discriminated

between 35 cancer types with an overall recall of 90%.73 Simi-

larly, Tang et al. developed a random forest classifier trained

on methylation and miRNA expression data from 17 classes of

solid tumors to predict tumor origin.74 For metastatic tumors,
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researchers developed random forest models that perform

feature selection and tissue-of-origin classification using gene

expression and mutation data.75 Random forest classifiers are

popular due to their ease of interpretability, which provides

mechanistic justification of predictions and can facilitate novel

biomarker discovery. However, random forest classifiers often

require hand-selected features that have relied on patterns of so-

matic mutations and chromatin state for determining tumor

origin. Using a fully connected, feedforward neural network,

Jiao et al. determined features correlated with tumor origin and

found that passenger mutation regional distribution and muta-

tion type strongly predict tumor origin.76

Determining cell-type composition in tumors is critical in

assessing cancer prognosis, as it gives insight into the differen-

tiation status, tumor origin, and stage. Several methods have

been developed to deconvolve bulk RNA-seq data, a common

and cost-effective method to profile solid tumors. Methods

such as CIBERSORT use SVMs to deconvolve bulk RNA-seq

data to estimate cell-type compositions.77 CIBERSORTx and

CODEFACS have expanded CIBERSORT to deconvolve bulk

RNA using nu-support vector regression (n-SVR) analysis and

achieve cell-type-specific gene expression without single-cell

data.78,79 While most deconvolution efforts have thus far

focused on bulk cellular tissue sources such as tumor speci-

mens, ML deconvolution applications to cell-free nucleic acids

are emerging. Indeed, inference of cell types of origin within

cell-free RNA (cfRNA) transcriptomes has been achieved using

adaptations of CIBERSORTx and n-SVR,80 as well as using

Bayesian cell proportion reconstruction inferred using statistical

marginalization.81

In addition to DNA mutations and RNA expression, DNA

methylation patterns can also differentiate between different

cancer types and subtypes. Capper et al. take advantage of

this by designing an ML model that can assign central nervous

system tumor (CNS) samples to methylation classes that corre-

spond to tumor types based on genome-wide methylation

data.82 Their model consists of a random forest to compute

raw scores for the methylation classes followed by a multino-

mial logistic regression model to calibrate those scores as

probabilities of each class. In two prospective analyses, they

showed that the methylation predictions perform comparable

to or better than histopathological analysis in subtyping some

tumors. As an alternative to genomic and transcriptomic

methods, Klein et al. used mass spectrometry to analyze

epithelial ovarian cancer, and they developed SVM and 1D

CNN models that analyze the mass spectrum and predict the

histotype of the tumor.83

Cancer treatment and tumor monitoring

Selecting cancer treatment, predicting response to treatment,

andmonitoring tumors after treatment are areas of great promise

for ML and genomics. Current treatment selection is determined

by clinical guidelines and trials that typically use a handful of

clinical features. In contrast, molecular profiles of cancers

generate amuch larger number of features that can be leveraged

to inform cancer treatments. For example, Sammut et al. take a

multi-omics approach to predict response to chemotherapy by

incorporating clinical, genomic, transcriptomic, pathology, and

treatment information into an ensemble model that averages

the predictions of logistic regression, SVM, and random forest

models.84 Bayesian models such as the continuous individual-

ized risk index (CIRI), which are adept at handling small datasets

and quantifying uncertainty, have been used tomodel ctDNA dy-

namics after treatment in diverse cancers.85 Such approaches

can model ctDNA responses associated with outcomes after

therapy with immune checkpoint inhibitors for non-small cell

lung cancer and predict which patients will achieve durable clin-

ical benefit.86 New emerging genomic technologies, such as sin-

gle-cell transcriptomics and spatial transcriptomics, have the

potential to revolutionize histopathology characterization of solid

tumors. In particular, single-cell transcriptomics can profile the

cell composition, which ML models can leverage to predict can-

cer treatment response and potential resistance.87 Graph neural

networks trained on spatial proteomics can model the tumor

microenvironment and predict patient response to cancer

treatments.49,88

REGULATORY APPROVAL OF CANCER ML
ALGORITHMS

The ML algorithms reviewed in the previous sections reflect

notable advances in the research landscape. However, before

ML algorithms can be deployed on patients, they generally

require regulatory approval, which entails more rigorous clinical

trials and validation testing than what is presented in published

academic work. As such, only a small proportion of ML algo-

rithms end up being deployed on patients. Of those that do,

they typically perform well in several predefined tasks like detec-

tion and triage settings, and they demonstrate reliability and

generalizability across different patient populations.

In the US, most ML algorithms are regulated as medical de-

vices by the Food and Drug Administration (FDA). In the past

decade, over 300 AI/ML-enabled medical devices have been

approved by the FDA, with over 40% approved since 2020.89

As an exception to FDA approval, laboratory-developed tests

(LDTs) may alternatively receive Clinical Laboratory Improve-

ment Amendments (CLIA) certification by the Centers for Medi-

care & Medicaid Services (CMS). Certification of such CLIA

LDTs generally applies a lower regulatory standard for approval

than the FDA.90 While FDA-approved medical devices are

approved for use by medical practitioners, CLIA-certified LDTs

are approved for use only by the laboratory for which the certifi-

cation is granted. LDTs have become increasingly complex and

often useML. The FDA has called for stricter regulation and over-

sight particularly over higher-risk LDTs,90 though regulatory

changes remain to be implemented. Figure 4 summarizes

several examples of regulatory-approved ML medical devices

for cancer, including clinical study and ML model details, and

Table 1 shows additional examples of approved devices.

The European Union’s FDA equivalent, the European Medi-

cines Agency (EMA), operates similarly: cancer-diagnostic

AI/ML devices are given a CE mark, which grants approval for

sale across the EU and other European countries. However,

unlike the US FDA, EMA device approval is decentralized, where

individual member countries conduct evaluations, and publicly

available information on approvals is sparse. In a comparative

analysis of ML devices approved by both the US FDA and
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EMA, most devices first received approval in Europe, suggesting

a potentially lower regulatory bar compared to the US.105

Imaging-based algorithms
Imaging-based algorithms comprise over 70% of all FDA-

approved AI/ML devices.106 Of these, radiology applications

are themost abundant. Pre-diagnosis algorithms likeWRDensity

and Densitas use CNN architectures like ResNet102 to provide

breast density category predictions for mammograms. AI-Rad

Companion and Quantib Prostate use CNN-based networks100

like U-Net to perform automated segmentation, density calcula-

tion, and volume estimation of the prostate gland. Computer-

aided triage devices like Saige-Q107 and CmTriage use CNN

classification algorithms to mark a subset of mammogram cases

as suspicious to aid radiologists in worklist prioritization. Com-

puter-aided detection/diagnosis devices provide more informa-

tion by identifying and scoring regions of interest in each image.

Examples of breast cancer devices include Lunit Insight, which

draws heatmaps (using convolutional layers) with probability

percentages over suspicious regions in a mammogram,34 and

Figure 4. Regulatory approval of cancer ML algorithms
Examples of ML medical devices for cancer that have received regulatory approval, including Transpara,91 Paige Prostate,38 Optellum,92 GI Genius,93 and In-
terVenn GLORI.94,95 Clinical study details are based on information available in published works and registered clinical trials. Model details are based on
publications by device developers.
Image sources: mammography,19 CT,20 histology,11 endoscopy.96
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MammoScreen, which uses a RetinaNet CNN architecture to

draw a bounding polygon over potential lesions along with the

predicted lesion type and risk score out of ten.108 Another

example is Optellum Virtual Nodule Clinic, a lung cancer algo-

rithm for CT images that uses a DenseNet architecture to

output malignancy prediction scores for user-selected regions

of interest.92

Imaging ML has more recently expanded outside of radiology

as well. Paige Prostate is an FDA-approved prostate pathology

algorithm, based on the work of Campanella et al.,41 that uses

CNNs and RNNs to diagnose prostate cancer from biopsy

slides.109 Other prostate CLIA-certified pathology ML tests

include DeepDx Prostate, which uses semantic segmentation

CNNs, and Galen Prostate, which uses multiscale CNNs and

gradient boosting classifiers for automated Gleason scoring.110

GI Genius, an FDA-approved device for polyp detection in

endoscopy videos, uses a CNN on individual video frames to

produce bounding boxes over suspicious lesions.93

Skin cancer is a promising yet challenging domain. Nevisense,

currently the only skin cancer AI device on themarket, is a device

that works by measuring electrical impedance across a poten-

tially abnormal skin lesion. On the horizon, 3Derm has received

FDA breakthrough designation for autonomous detection of

skin cancers, which is a fast-track process that signals possible

future approval. In the EU, several skin AI devices have already

received CE mark approval (TeleSkin and SkinVision), but their

efficacy has been questioned by independent validation

studies.111

Table 1. Additional examples of regulatory-approved cancer diagnostic devices

Approval

type (#)

Date

approved Device name Description Type of AI/ML Clinical study details

FDA (P170019) 2017 FoundationOne CDx Microsatellite instability

and tumor mutational

burden solid tumor tests

Probit model for level

of detection98
Prospective observational

studies (1,400 participants)

CLIA

certification

2017 Signatera LDT for ctDNA-based

cancer recurrence test

Cox proportional hazards

model97
Prospective observational

studies (2,000 participants),

still recruiting

FDA (K173839) 2017 The Cancer Genetics

Tissue of Origin Test

Tissue of origin

genetic test

Normalization, classification,

and correlation algorithms99
Analytical testing only

FDA (K183271) 2019 AI RAD Companion

(Pulmonary)

Lung nodule

segmentation

FCOS CNN object detection

network100
>4,500 cases, standalone study

only, reader-annotated ground

truth

FDA (K183285) 2019 CmTriage Breast cancer triage CNN101 1,255 exams, standalone study

only, biopsy-proven ground truth

FDA (K200595) 2020 CellaVision DC-1 Blood cell counter CNN Analytical and clinical testing

(598 samples) comparing to

predicate device

FDA (K201232) 2020 Limbus Contour Radiation treatment

planning

U-Net CNN103 Benchtop testing only

FDA (K193229) 2020 Transpara Breast cancer detection VGG-16 CNN and gradient

boosting trees91
240 exams, AI-assisted (18 readers)

and standalone studies, ground

truth unclear

FDA (K202013) 2020 WRDensity Breast cancer density Resnet-34 CNN102 871 exams, standalone study only,

consensus ground truth

FDA (K211951) 2021 GI Genius GI lesion detection CNN object detection

network93
Standalone study only (150 videos

with 338 lesions)

CLIA

certification

2021 Grail Galleri Multi-cancer early

detection test

Various ML models (logistic/

lasso regression, Markov

chains, random forest)104

Prospective observational and

interventional studies (>130K

participants)

CLIA

certification

2021 InterVenn GLORI LDT for ovarian cancer

diagnosis

Regression models

and RNNs94,95
Prospective observational study

(1,200 participants), ground truth

by imaging

FDA

(DEN200080)

2021 Paige Prostate Prostate pathology

cancer detection

ResNet-34 CNN + RNN

(multiple-instance/weakly

supervised learning)41

Standalone analytical testing

on 847 whole slide images (WSIs)

and AI-assisted study on 527 WSIs

with 16 pathologists, consensus

ground truth

FDA (K202300) 2021 Optellum Virtual

Nodule Clinic

Lung nodule diagnosis DenseNet CNN92 300 subjects, AI-assisted

(12 readers) and standalone

studies, ground truth unclear
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Several devices have been approved for post-diagnosis deci-

sion making; for instance, Limbus Counter and Ethos are both

devices that use segmentation CNNs like U-Net to draw con-

tours of organ structures for radiation treatment planning.112

Molecular-based algorithms
Most molecular-based algorithms are focused on diagnostic ap-

plications in blood samples. FDA-approved cell counting de-

vices like CellaVision and Sight OLO use CNNs to characterize

and count white blood cells, red blood cells, and platelets in

blood samples and are intended for use by lab technicians.113

CellSearch uses computer vision algorithms to characterize the

morphology of circulating tumor cells in metastatic breast, colo-

rectal, or prostate cancer patients. The Cancer Genetics Tissue

of Origin Test is an RNA-based diagnostic algorithm for aiding

clinicians in determining the tissue of origin for tumors. Exact

Science’s Cologuard is a colorectal cancer genomics test that

relies on mathematical algorithms to produce risk scores.

Liquid biopsy tests are the most common type of ML-enabled

diagnostics performed by CLIA-certified laboratories. LungLife

AI’s LungLB is a liquid biopsy test that uses a signal-binning al-

gorithm to confirm suspicious lung nodules in CT scans. Galleri is

a liquid biopsy test that uses various ML regression and classifi-

cation models72 for early detection of multiple cancers and has

received FDA breakthrough designation but not approval.

InterVenn has CLIA certification for two products: GLORI is a gly-

coproteomic liquid biopsy test that utilizes neural networks and

logistic regression models for ovarian cancer diagnosis, and

DAWN IO is a test that uses tree-based methods and ensemble

classifiers for assessing melanoma therapy.94 Other genomics

tests that are not on the market but are in ongoing large clinical

trials include Freenome’s Multinomics, a cell-free biomarker pat-

terns blood test using SVM,60 and Exact Science’s multi-cancer

early detection blood test.

Clinical studies evaluating cancer ML algorithms
The types of clinical studies vary depending on the regulatory

pathway a device is approved by. For FDA approval, devices

must demonstrate evidence of clinical safety and effectiveness

for use on patients. Clinical evidence is typically produced via

AI-assisted studies and/or standalone studies. AI-assisted

studies compare clinicians using AI in diagnostic decision mak-

ing with those not using AI. In these studies, ground truthing is

typically determined by the consensus of several specialists’ in-

terpretations. Readers are selected across varying degrees of

specialty (generalist versus board certified). Standalone studies

provide another form of clinical evidence: the performance of the

AI alone is assessed with reference to a reader consensus

ground truth, and the metric is compared to the average clinical

reader’s performance or a standard. In both types of studies,

evaluation studies are typically enriched with cancer cases rela-

tive to the population incidence rate.

As an example, Transpara, a breast cancer detection algo-

rithm that received FDA approval in 2018, reported clinical evi-

dence from an AI-assisted study and a standalone comparison.

Transpara draws regions of interest around suspicious lesions in

a mammogram and outputs a score indicating the likelihood of

cancer in the image. In the reader study, fourteen board-certified

radiologists readmammograms once with the aid of AI and once

without, with a one-month washout period in between. The eval-

uation dataset consisted of 240 total mammogram studies, with

100 cancer exams, 40 false positive recalls from screening, and

100 normal exams. The primary endpoint was the superiority of

performance with AI versus without. Secondary analyses

included a superior performance with AI on lesion subtypes

and average reading time saved by radiologists. The standalone

study compared the AI’s performance with the average perfor-

mance of the fourteen radiologists. In the AI-assisted study,

the radiologists’ performance improved from 0.866 AUC without

AI assistance to 0.886 with AI assistance. In the standalone

study, the AI achieved an AUC of 0.887 versus the average clin-

ical reader’s performance of 0.866 AUC.

Formolecular-basedMLdevice approvals, analytical testing is

often conducted in addition to clinical testing. For instance,

CellaVision DC-1’s FDA evaluation provided evidence demon-

strating analytical precision via repeatability (measurements un-

der the same conditions are consistent) and reproducibility

(measurements under different conditions are consistent). The

clinical testing compared measurements on patient samples

with the approved predicate device. Other analytical validation

characteristics include accuracy and specificity.

CLIA certifications are less transparent in their evaluation stan-

dards compared to the FDA (i.e., no publicly available sum-

maries) but are generally limited to ensuring the analytical validity

of lab capabilities. In addition to CLIA certification, most

commercially available LDTs have undergone clinical trial valida-

tions that are registered with ClinicalTrials.gov. These studies

tend to be prospective and larger in scope than FDA-approved

device counterparts, which have a median participant size of

300.89 For instance, Grail’s Galleri has ongoing clinical trials

with over 130,000 participants across multiple settings and

countries. Intervenn’s GLORI test enrolled 1,200 patients in its

clinical trial. Primary endpoints are similar to FDA evaluations

and include AUC, sensitivity, specificity, positive predictive

value, and negative predictive value.

DISCUSSION

ML is increasingly important in cancer detection, prognosis, and

treatment planning. However, the reliability and trust of ML algo-

rithms have lagged behind the pace of technical development. In

this section, we discuss some key challenges that ML faces on

the path to the clinic, including disparate regulatory standards,

stringent criteria for meaningful model evaluation, and barriers

to adoption by doctors and hospitals. We then discuss how

ML methods differ when applied to various cancer data

modalities, and we conclude by highlighting some exciting

recent developments in both biomedical and ML technologies

that illustrate the potential of ML to transform clinical oncology.

Regulatory standards
Disparate regulatory standards in the US and internationally can

lead to under-regulation andmistrust of ML algorithms.114Within

the US, the FDA has historically deferred the regulation of

LDTs to CMS. Whereas CMS typically focuses only on analytical

validity (i.e., precision, sensitivity, and accuracy of measuring
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molecular quantities), the FDA places additional emphasis on

clinical validity (whether the test accurately identifies the relevant

disease in patients). As LDTs today increasingly provide diag-

nostic predictions and involve ML-based algorithms, demon-

strating that cancer diagnostic tests truly achieve the desired

clinical outcomes is necessary for ensuring their trustworthiness

and reliability to doctors and patients.

Discrepancies in regulation internationally contribute an addi-

tional risk to the trustworthiness of medical ML algorithms. A

study of medical devices approved in both the US and EU re-

vealed that devices that gained CE mark approval first in the

EU were three times more likely to be recalled due to safety con-

cerns than devices that received US FDA approval first.115 A key

difference is that in the US, the FDA requires clinical evaluation

prior to approval; in the EU, clinical evaluation is only required af-

ter approval as a post-market follow-up study.116 In effect, the

CEmark system incentivizes faster adoption of ML into the clinic

but at the risk of prematurely approving devices that may pose

potential harm to patients.

Limitations of ML model evaluations
The lack of high-quality, diverse evaluations hinders the ability to

assess true algorithm performance in patient populations. One

factor is the lack of gold-standard test datasets—on-site valida-

tions are difficult and patient data are hard to obtain, in part due

to privacy concerns and restrictive data use agreements.117 A

well-documented phenomenon of ML models is that they can

learn spurious correlations present in device types and demo-

graphics,89 resulting in biased performance when evaluated on

different patient populations. Additionally, evaluation test sets

are often enriched with positive cases, which can yield imbal-

anced comparisons.

Metrics

Medical AI studies often use proxy metrics for clinical endpoints,

which may generate misleading conclusions. For instance, AUC

summarizes model performance across all possible operating

points, which is not informative of how an algorithm will perform

when deployed at a particular threshold. Algorithms that show

an AUC improvement or exceed a certain AUC value (e.g.,

>0.95 in some FDA-approved devices) may perform differently

in real-world populations.118 Fixed-threshold metrics like sensi-

tivity and specificity should reflect the relevant clinical task at

hand; for instance, a diagnostic algorithm may be optimized for

minimizing missed cancers but should also consider the addi-

tional burden to patients caused by false positives (i.e., invasive

testing and stress).

Clinical trials and monitoring

Prospective trials are also important to measure appropriate

clinical outcomes, rather than a simple comparison to stand-

alone references. For example, if an ML device is to be used

as a clinical diagnostic aid, then it should be evaluated by

comparing clinician performance with and without the device

rather than evaluating the device’s predictions in isolation.119

Randomizing patient cohorts can minimize biases in selecting

test populations. Also, prospective trials can capture human-AI

interactions that occur after deployment.120 Continuous perfor-

mance monitoring of ML algorithms after approval and post-

market surveillance mechanisms are necessary to ensure that

the purported clinical benefits of ML hold up under various distri-

bution shifts.121 As a case study, earlier-generation computer-

aided detection software for mammography was approved by

the FDA in 1998 and widely adopted in part because of Medicare

and Medicaid reimbursements. However, a large observational

study by Lehman et al. on mammograms from 2003 to 2009

found that CAD software had failed to improve the diagnostic ac-

curacy of mammography.122 This was due in part to changes in

radiologists’ behavior, with increased familiarity with theML over

time.123 Moreover, the original evaluation data included older

traditional film mammograms, which have since been phased

out. As such, reproducibility and transparency are essential for

building trust in the outcomes of validation studies.32

Interpreting ML models

Interpretability is a common challenge for ML. One important

reason is that most models do not explicitly identify causal

features but instead rely on correlating input features with out-

comes. As such, models may accurately identify phenotypes

but rely on spurious confounders present in the data and

present misleading conclusions.124 Nonetheless, interpretability

methods can still be useful for explaining howanMLmodelmakes

its predictions, which is important for building trust with clinicians

and providing additional diagnostic insight beyond the prediction

alone.125 Interpretability methods can either be applied post hoc

to extract explanations from trained models, or they can be incor-

porated into themodel design so that themodel learns to simulta-

neously produce explanations and predictions. Examples of post

hoc interpretability techniques include using the ML model to

generate heatmaps over the input33 and clustering the inputs

into interpretable groups based on the ML model’s embedding

of the input.126 As an example of a model with explainability built

into its design, Zhang et al. created an ML model that learns to

generateexplanations innatural language for itspredictionsduring

training.127Posthocmethodsare convenient because theycanbe

applied to most models without requiring specialized training, but

models with interpretability built in may provide more reliable ex-

planations for what the model is doing.125 Models that output a

probabilityor rangeof scores (e.g., from1 to10) shouldbecarefully

designed and calibrated to user expectations.128

Challenges to adoption
While most academic research has been focused on improve-

ments in the diagnostic accuracy of ML algorithms, many of

the driving factors for real-world clinical ML adoption fall outside

of solely technical progress. Interoperability and integration with

existing electronic health records and image storage systems is

a significant barrier to adoption by hospital systems.129 Clini-

cians may not trust or understand ML algorithm decisions and

outputs. Developers must effectively communicate the eco-

nomic value of their ML algorithms to hospital decision makers

and overcome organizational inertia. Finally, patients and clini-

cians should also understand the benefits and risks of using

ML in decision making.130

Different data modalities require different ML
techniques
Imaging and molecular data are the two most common data mo-

dalities in cancer diagnostics. However, in practice, they require
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very different ML approaches due to fundamental differences in

the problems each data type presents. Imaging-based tasks

typically involve a needle-in-the-haystack problem, where small

features associated with cancer are present in a large image

space. CNNs are highly effective and have become ubiquitous

because they are able to efficiently learn from large amounts of

available data, and they can extract spatially distinct hierarchies

of features present in an image.

Molecular data, on the other hand, tend to be highly structured

and have features that correspond to distinct biological mea-

surements (i.e., DNA sequences). A primary hurdle in analysis

is the high dimensionality of biological features and the inherent

sparsity present in the data. Here, ML regularization techniques

like LASSO regression are used, as well as dimensionality reduc-

tion techniques like PCA for selecting salient biomarkers. Finally,

statistical ML models like logistic regression and decision trees

are used to pick optimal thresholds and minimal levels of detec-

tion that correspond to a clinically meaningful presence of

disease.

Future developments
New biomedical and ML technologies are rapidly emerging that

will change the wayML is applied to cancer diagnostics andmay

significantly improve the predictive power and clinical usefulness

of these models.

Biomedical data

Biomedical advances are enabling physicians to obtain increas-

ingly detailed medical data about patients. In pathology, new

multiplexed proteomics technologies like CODEX131 allow stain-

ing for 40–100 proteins simultaneously, providing a much more

detailed view of the cellular and proteomic composition of tis-

sues than traditional staining techniques like H&E staining and

immunofluorescence. Similarly, spatial transcriptomics132 pro-

vides a view of the spatial distribution of RNA transcripts across

a pathology sample, thereby incorporating another form of

omics data into images. Sequencing data from the tumor micro-

biomemight serve as a diagnostic tool for oncology as scientists

learn more about the role of bacteria in cancer.133 Data from the

immune system, such as T cell receptor sequences, can also

provide diagnostic clues for cancer based on the body’s

response to tumors.134 ML methods that use these new

sources of data may be able to makemore accurate and specific

predictions.

Integrating imaging and omics

Imaging and molecular data often provide complementary infor-

mation about a patient’s cancer, so integrating these two data

sources can improve ML predictions for diagnostics, prognosis,

and treatment. One method of combining the two is through

biomedical technologies such as CODEX and spatial transcrip-

tomics, which overlay spatially resolved proteomics and tran-

scriptomics data on images, allowing models to process omics

data in image form.49,88,135 Another promising direction is the

development of multimodal models, which fuse multiple ML

models to combine information across several data types

(images, genomics, clinical records, etc.) to make better predic-

tions.2 Multimodal models can have a more holistic view of each

patient and can combine multiple weak signals into a strong

signal that can better inform the patient’s diagnosis or optimal

treatment. For example, Vanguri et al. predict response to PD-

(L)1 blockade in patients with non-small cell lung cancer using

a multimodal model that combines medical imaging, histopath-

ologic, and genomic features and outperforms unimodal

models.136 Although there are many challenges to developing

multimodal models, such as linking data across modalities and

handling patients with incomplete data, thesemodels may prove

to be very powerful because they can reason across multiple

sources of information, just as physicians do.

ML methodology

New ML models have emerged that improve upon the standard

deep learning architectures, such as CNNs, that are commonly

used in cancer diagnostics. Several such models have demon-

strated clear improvements in predictive accuracy. One of the

best examples is the transformer,137 which was originally de-

signed for natural language processing. Transformers have since

been modified and applied to pathology images.138 Another

trend is to re-envision image-based data as a graph and apply

GNNs. For example, Wu et al. convert images of tissue samples

into graphs of cells, where each cell is a node in the graph and

neighboring cells have edges connecting them.88 GNNs applied

to these graphs canmake diagnostic and prognostic predictions

that may be more robust against visual artifacts and more sensi-

tive to the interconnections between cells than image-based

predictions. Instead of using new ML models, another option is

to improve the performance of existingMLmodels by performing

data augmentation with generative ML models, which learn to

synthesize new data that look similar to the real training

data.139 Generative models are also useful for translating be-

tween data formats such as generating text reports frommedical

images.140

The technological advancements discussed in this Review

illustrate the exciting potential of ML to leverage the latest

biomedical data to transform the field of clinical oncology. As

ML methods are further improved and carefully validated with

appropriate monitoring and regulatory oversight, they may

soon see wide-scale clinical adoption to improve cancer care

for patients.
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SUMMARY

Combination therapy is a promising approach in treatingmultiple complexdiseases.However, the large search
spaceof available drugcombinationsexacerbateschallenge for experimental screening. Topredict synergistic
drug combinations in different cancer cell lines, we propose an improved deep forest-based method, ForSyn,
and design two forest types embedded in ForSyn. ForSyn handles imbalanced and high-dimensional data in
medium-/small-scale datasets, which are inherent characteristics of drug combination datasets. Compared
with 12 state-of-the-art methods, ForSyn ranks first on four metrics for eight datasets with different feature
combinations. We conduct a systematic analysis to identify the most appropriate configuration parameters.
We validate the predictive value of ForSyn with cell-based experiments on several previously unexplored
drug combinations. Finally, a systematic analysis of feature importance is performed on the top contributing
features extracted by ForSyn. The resulting key genes may play key roles on corresponding cancers.

INTRODUCTION

There has been important progress in anticancer drugs, espe-

cially targeted therapies. However, many tumors inevitably

become resistant to the single agents.1–3 To overcome the limi-

tations of monotherapy, combination therapy has been pro-

posed as a new treatment approach. In combination therapy,

multiple drugs can target multiple targets, subpopulations, or

diseases simultaneously.4,5 Compared with monotherapy, com-

bination therapy can increase therapeutic efficacy, reduce toxic

side effects, and slow down the development of drug resis-

tance.1,6–9 For these therapeutic benefits, combination therapy

has become a standard clinical treatment strategy for several

complex diseases including cancers.7

Systematic surveys of effective drug combinations in vitro

have been proposed such as the high-throughput screening

method.10 However, it is insufficient for the large-scale experi-

ments to search across such a large drug combination

space.11–13 To solve these problems, some computational ap-

proaches have been proposed such as network analysis14–16

and mathematical models.17 But most of them are often

limited in the prior knowledge of biomedicine and the complexity

of networks.14 Alternatively, deep learning, as a data-driven

computing method, has been widely used in drug combination

prediction because of its generality, generalization and high pre-

diction performance. Almost all deep learning methods used in

drug combination prediction are based on deep neural networks

(DNNs), including feedforward neural network,18,19 deep belief

network,20 autoencoder,21 transformer,22 and graph neural

network (GNN).23 Although these methods have achieved high

overall prediction performance, the problem of class imbalance

is ignored. In drug combination dataset, the number of positive

MOTIVATION Combination therapy has shown promise as a treatment for complex diseases such as can-
cer. Synergistic drug combinations can offer increased therapeutic efficacy and reduce toxicity compared
with single drugs. However, class imbalances in datasets have complicated the use of computational tools,
such as deep learning, for synergistic drug prediction. We propose an improved deep forest-based
model, ForSyn, to address the above problem on imbalanced, medium- or small-scale datasets with high
dimensionality.
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samples (minority class) involving synergistic drug combinations

is usually small. Although most samples are negative samples

(majority class) including antagonistic, additive and slightly syn-

ergistic drug combinations, which is usually more than ten times

the number of positive samples. Most previous methods are

based on the assumption that the distribution of training samples

in each class is balanced. In the case of imbalanced data, the

classification results are usually biased toward the majority

class.24,25 That is, the model tends to predict more samples as

majority (negative) class to obtain higher overall prediction accu-

racy, while ignoring the prediction accuracy onminority (positive)

class. Especially in DNN-based methods, it is prone to over-

fitting because of the samples in minority class are particularly

rare. Anand et al.26 explored the impact of imbalanced data on

the neural network backpropagation algorithms. They showed

that the majority class essentially dominates the gradient of the

network and is responsible for the weight update of the model.

The classification error of the majority class will rapidly decrease

in the early iteration process, while the classification error of the

minority class will increase and cause the network to fall into a

slow convergence mode.

In addition, most previous studies only applied structural and

physicochemical properties of drugs, and gene expression pro-

files of untreated cancer cell lines to construct the feature set.

This may ignore the biological connection between drugs and

cancer cells, as synergism is the response of cells to drugs.5

The response of cancer cells to drugs should also be consid-

ered.27–30 Once more informative feature types are applied, the

samples with missing features should be removed. The number

of samples will be reduced, and the dimension of each sample’s

feature will be increased. The DNN-based methods always rely

on the large-scale training datasets, and it is difficult to maintain

its prediction performance on a medium- or small-scale dataset.

Small sample size dataset with high dimensionality has further

aggravated the difficulty in drug combination prediction. This is

also an inherent problem in many biomedical datasets with

multi-view/multi-omics data.

Given the powerful performance of deep learning technology

on classification tasks, it is of great importance to explore the

application of non-neural network deep learning technology on

imbalanced, medium- or small-scale datasets with high dimen-

sionality. Zhou et al.31 proposed the deep forest (DF) model,

which can be regarded as an alternative to DNN. DF is a multi-

layer cascade structure, where each layer is composed of multi-

ple tree-based forests. Each forest can be regarded as a unit in a

cascade layer, similar to the neurons in the DNN. Compared with

the DNN, the DF has the following advantages: suitable for data-

sets of different sizes, few hyper-parameters, and adaptive gen-

eration of model complexity.32 The model complexity of DF can

be adaptively determined under sufficient training. This advan-

tage makes DF applicable to datasets of different scales, espe-

cially medium-sized datasets.33 Because of its advantages, DF

has been widely used in many fields, such as image retrieval,34

cancer sub-category identification,35 online financial cash-out

monitoring,36 etc. In the field of drug combination prediction,

Zhang et al.37 proposed a DF-based model, DCE-DForest, con-

sisting of two components, a drug Bert38 and a DF model. The

Bert is a pretrained neural network to obtain the representations

of drugs, and a DF is used to predict drug combinations. First,

the drug representations extracted by Bert cannot fully represent

the multi-view (physical, biological, etc.) information of drugs.

Each dimension of the representations has no specific meaning

and cannot be interpreted. Second, DCE-DForest uses the orig-

inal DF framework and does not consider the case of data with

imbalance and high feature dimension.

To solve the above problems, we first construct a feature set

consisting of physical, chemical and biological properties of

drugs, in which the key features can be evaluated through

ForSyn. The feature types include drug molecular fingerprints

(DMFs), drug physicochemical properties (DPPs), cell line-spe-

cific drug-induced gene expression profiles (DGEs), and gene

expression profiles of untreated cell lines (CGEs). The cell line-

specific DGE feature can not only capture biological connection

between drugs and cancer cells, but also be generalized to the

study of patients.39 Each dimension of the curated feature types

has a specific meaning, which can facilitate the interpretable

analysis to find out the key features in prediction process. Faced

with this imbalanced, high-dimensional and medium-sized data-

set, an improved DF-based model, ForSyn, is proposed to pre-

dict synergistic drug combinations. Two novel forest units are

designed to embed in ForSyn. One is an RF based on affinity

propagation (AP) clustering40 and stratified under-sampling,

which is designed to deal with the problem of class imbalance.

The other is an extreme tree forest (ETF) that based on data

complexity dimension reduction dealing with the problem of

high-dimensional data. Then, the application of ForSyn is

systematically analyzed by comparing 12 algorithms in eight

datasets. The ForSyn with all the feature types wins the best per-

formance in most cases. The performance of different configura-

tions of ForSyn are also explored. Then, cellular experimental

validation performed on a set of previously untested drug com-

binations further confirms the predictive ability of ForSyn. Finally,

a systematic interpretable analysis of the key features extracted

by ForSyn is performed.

RESULTS

The framework of ForSyn
In this study, the drug combinations tested in different cancer

cell lines are collected as the sample dataset. The effects of

drug combinations can be classified as synergism and non-syn-

ergism. A total of 3,192 samples are obtained from the

DrugComb,41 DrugCombDB,42 and AstraZeneca-Sanger Drug

Combination Prediction43 databases, and classified according

to the scheme proposed byMalyutina et al.44 Two hundred sam-

ples are regarded as the synergism class (minority class), and the

remaining 2,992 samples are classified as non-synergism class

(majority class). The imbalance rate is close to 15, which is

defined as the ratio between the size of the majority class

and that of the minority class. Meanwhile, feature set is

composed of four feature types. The 881-dimensional DMF,

55-dimensional DPP, and 978-dimensional DGE are used as

the feature of drugs, the 978-dimensional CGE are used to repre-

sent cancer cell lines. All the feature types have been proved to

be effective on other drug-related prediction tasks.33,45–49 Each

dimension of the curated feature types has a specific meaning,
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which can facilitate the interpretable analysis to find out the key

features in prediction process. More specifically, each dimen-

sion in DMF, DPP, and DGE represents a substructure, physico-

chemical property, and gene expression values of drugs

respectively.

To further investigate the influence of different representations

in the classification process, eight different datasets including

different feature combinations are generated (Table 1). In the

training dataset of this study, a sample represent a drug combi-

nation on a particular cancer cell line (i.e., a drug combination-

cell line pair). The same drug combination on different cell lines

will have different effects. It is important to distinguish the drug

combinations on different cell lines. In order to make the model

to gain the distinguished ability, the representation of each sam-

ple is consisting of the drug feature and a cell line-specific

feature. The drug feature includes DGE, DMF, and DPP. The

cell line-specific features are DGE and CGE. According to the

principle, eight datasets are generated and listed in Table 1.

Faced with the imbalanced, high-dimensional and medium-

sized datasets, we propose ForSyn, which is a multi-layer

cascade structure (Figure 1). Two novel forest types are

embedded as the unit in each cascade layer. One is the RF

based on clustering and stratified under-sampling (RF-CSU)

dealing with imbalanced data. The other is an ETF based on

data complexity dimension reduction (ETF-DR) dealing with

high feature dimension (details are provided in STAR Methods).

RF is one of the representative algorithms of ensemble

learning. It performs bootstrap sampling and random feature

selection in the induction process of the base classifier. The

perturbation of the feature space and the sample space ensures

the diversity of the ensemble system. However, as with most

traditional machine learning algorithms, the RF cannot effectively

process imbalanced data. To deal with the problem of imbal-

anced data, the most common method is to rebalance the

training set, such as randomly under-sampling the majority

class. But this method always loses useful information. Some

training samples that may play a key role in the classification pro-

cess may be lost in the under-sampling process. To overcome

this defect, we design an under-sampling method on the basis

of AP clustering and stratified under-sampling, to rebalance

the training set and minimize the information loss caused by

random sampling. The proposed under-sampling method is

combined with the standard RF framework to rebalance the

training set of each decision tree.

The ETF can be regarded as a variant of RF. Different from the

RF, the ETF uses all the features as candidates, and then

randomly selects a feature as the split node of the tree. The

tree will continuously grow until each leaf node contains samples

of the same class.32 According to the properties, the ETF per-

forms better to the imbalanced data. The pure leaf node that

stores minority samples can effectively identify unknown minor-

ity samples. However, the high feature dimension and random

selection of features would deepen the depth of the tree and

cause over-fitting. To overcome the problem of ETF, we propose

a greedy dimension reduction method, which combines a data

complexity metric with the greedy algorithm. Data complexity,

such as the shape of the decision boundary and the overlap be-

tween classes, is always used to describe the characteristics of

the data.50 The data complexity metrics would closely affect the

predictive performance of the classifier.51 In this study, the data

complexity metric is defined as the tail overlap of the conditional

distribution between two classes50 (details are provided in STAR

Methods).

Performance evaluation
In this experiment, ForSyn is compared with 12 advanced algo-

rithms on five metrics. The comparison algorithms include eight

state-of-the-art deep learning-based algorithms in drug combi-

nation prediction, and four advanced machine learning algo-

rithms. The deep learning-based algorithms are four DNN-based

methods (DeepSynergy,18 MatchMaker,19 TranSynergy,22 and

SynPathy52), two DF-based methods (original DF32 and DCE-

DForest37), and two GNN-based methods (DeepDDS-GCN and

DeepDDS-GAT23). The machine learning algorithms are two

ensemble learning methods (XGBoost53 and RF), and two imbal-

ance learning methods (RUSBoost54 and balanced bagging55).

The evaluation metrics include F1 score, AUPR (area under the

precision-recall curve), recall, MCC (Matthews correlation coef-

ficient), and G-mean24; the F1 value is regarded as themain eval-

uation metric.

The results of all algorithms on the five metrics are shown

in Tables S1–S5. The performance results are the mean value

of ten-time 5-fold cross-validation (CV). In addition to the

Table 1. Eight datasets used in this study

Dataset Description Dimension

Data 1 DMF + CGE 2,740

Data 2 DPP + CGE 1,088

Data 3 DGE 1,956

Data 4 DMF + DPP + CGE 2,850

Data 5 DMF + DGE 3,718

Data 6 DPP + DGE 2,066

Data 7 DMF + DPP + DGE 3,828

Data 8 DMF + DPP + DGE + CGE 4,806

In the eight datasets, the representation of each sample is the concate-

nation of pairwise drug feature and the cell line feature.

Figure 1. The overall framework of ForSyn
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DeepDDS, other 11 algorithms are tested on eight datasets (data

1–8) composed of different feature types. The performance of

DeepDDS-GCN and DeepDDS-GAT based on graph data is

shown in separate rows in Tables S1–S5. In Tables S1–S5, the

performance of 11 algorithms based on data 1–8 is ranked,

and the ranking values are shown in parentheses. The smaller

ranking value indicates better performance. Then, the Friedman

test and the Nemenyi test56 are used to analyze the performance

difference among the 11 algorithms. The Friedman test com-

pares the performance differences ofmultiple algorithms onmul-

tiple datasets, while theNemenyi test is performed between pair-

wise algorithms. According to Equations 15 and 16 (provided in

STAR Methods), the Friedman statistical values and the corre-

sponding p values in Tables S1–S5 are 16.40 (p = 2.638 3

10�8), 55.35 (p = 5.200 3 10�11), 37.30 (p = 1.480 3 10�10),

28.10 (p = 1.8233 10�9), and 33.34 (p = 3.4193 10�10), respec-

tively (N = 8, K = 11). The distribution of FF is based on the F dis-

tribution with 10 and 70 degrees of freedom. The critical value of

FF is 1.969 (Equation 16) with a 95% confidence level. The statis-

tical results and p values on all the metrics reflect that there is a

significant performance difference among the 11 algorithms.

Next, according to Equation 17 and Table S6, CD = 5.338 is

calculated with the 95% confidence level in this study.

Figures 2A–2E visually show the Nemenyi test results for

Tables S1–S5. The average rank of the algorithms in data 1�8

is shown as the red dot in Figures 2A–2E.

From the average rank of performance results on data 1–8

(Figures 2A–2E; Tables S1–S5), it is observed that the

ForSyn ranks first on four metrics, F1 score, AUPR, MCC and

G-mean, showing its superior prediction performance. In addi-

tion, ForSyn performs better than the two DeepDDS algorithms

on almost all datasets (Tables S1–S5). The deep learning-

based algorithms, original DF, DCE-DForest, DeepSynergy,

MatchMaker, TranSynergy, SynPathy and DeepDDS, have no

module for imbalanced data processing, so the performance re-

sults on the five typical evaluation metrics of imbalanced data

are relatively low. For the metric of recall, the performance of

ForSyn ranks second, slightly lower than that of balancedbagging

(Figure 2C; Table S3). Actually, the recall metric cannot fully reflect

the performance of themodel, and it often conflictswith precision.

According to Figure 2A and Table S1, the F1 score of balanced

bagging is low. It can be inferred that the algorithm greatly sacri-

fices the recognition rate of the majority class samples in ex-

change for an improvement in the recognition rate of the minority

class samples. In addition to ForSyn, the other two DF-based al-

gorithms, original DF and DCE-DForest, have similar ranks in all

metrics and get the middle rank. This shows that the innovative

design of ForSyn has brought great performance improvement.

Figure 2F show the performance difference between ForSyn

and other algorithms on the main metric (F1 score) more intui-

tively. From Figure 2F, it is observed that only three algorithms,

XGBoost, random forest, and balanced bagging, have slightly

better performance than ForSyn on data 1, 2 and 4. In addition

to the three algorithms, ForSyn outperforms other comparison al-

gorithms on all datasets. Similar results exist in other metrics. The

performance difference on other metrics is shown in Figure S1.

Next, to evaluate the generalization performance on novel un-

seen cell lines, drugs and drug combinations, three cross-valida-

tion strategies are performed. The training and test sets are shuf-

fled by cell lines, drugs, or drug combinations, which are

described as leave-cell-line-out CV, leave-drug-out CV and

leave-drug-combination-out CV. The performance results are

listed in Table S7. The result of the leave-drug-combination-

out CV of all algorithms is inferior to random 5-fold cross-valida-

tion. For the leave-drug-out and leave-cell-line-out CV, the re-

sults are similar to those mentioned by Preuer et al.18 That is,

all methods yield low predictive performance and thus do

not generalize well on novel drugs or novel cell lines, while

ForSyn has achieved the best performance in F1 score, AUPR,

and MCC, followed by TranSynergy. On the metric recall,

RUSBoost is still the best, which is similar to the results dis-

cussed in random CV.

Parameter analysis
Each layer of DF is the ensemble of multiple individual forests. In

ForSyn, the RF-CSU unit dealing with data imbalance and the

ETF-DR unit dealing with high-dimensional features are de-

signed. This subsection will analyze the parameters that affect

the performance of the RF-CUS, ETF-DR units, and ForSyn,

respectively.

In the RF-CUS unit, themajor parameter is the under-sampling

ratio for themajority class, which is the ratio between the number

of samples in the majority class before sampling and after sam-

pling. We explore the effect of the number of base classifiers and

under-sampling ratios on the performance of the RF-CSU unit.

As shown in Figure 2G, the performance of the RF-CSU unit

wins the best performance when the under-sampling ratio is

0.4. In addition, the increase in the number of decision trees

dose not bring a significant improvement in model performance.

Therefore, in the ForSyn, the number of decision trees in the

RF-CSU unit is set to 100, and the under-sampling ratio for the

majority class is set to 0.4.

Figure 2H shows the parameters that affect the performance

of the ETF-DR unit. The longest dimension of the samples is

4,806 (data 8). We first sort all features by data complexity,

and then perform a greedy backward shrinkage to iteratively

reduce the feature dimension, with a step size of 300. From Fig-

ure 2H, the performance of the ETF-DR unit wins the best perfor-

mance when the retained dimension is 1,806. In addition, when

the number of decision trees is set to 100, the model has the

best performance. Therefore, in the ForSyn, we first reduce the

feature dimension of the training sample to 1,806, then train

the ETF-DR unit, and set the number of base classifiers of the

ETF-DR unit to 100.

Table 2 shows the F1 score of the ForSyn under different

configurations. It is observed that the average ranks of

ForSyn(RFC*2+ETFD*2) and ForSyn(RFC*3+ETFD*3) are the same,

and the average rank of ForSyn(RFC*4+ETFD*4) model is slightly

lower. It is inferred that as the unit number increases, the perfor-

mance of the model does not increase obviously. According to

the principle of Occam’s razor (‘‘entities should not be multiplied

unnecessarily’’), ForSyn(RFC*2+ETFD*2) is chosen as the best

configuration for the proposed model. In addition, by observing

the performance of ForSyn(RFC*4) and ForSyn(ETFD*4), it can be in-

ferred that the ETF-DR unit has more advantages than the RF-

CUS unit when processing drug combination dataset. If ForSyn
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Figure 2. Performance evaluation of ForSyn

(A–E) According to Nemenyi test, the average rank of all algorithms tested on data 1–8 and five metrics: (A) F1 score, (B) AUPR, (C) recall, (D) MCC, and (E)

G-mean. The average rank of each algorithm in eight datasets is marked as a red dot, and a horizontal line crossing the red dot indicates the range of CD value in

Nemenyi test. The smaller the overlap between two horizontal bars, the more significant the difference between the two algorithms.

(F) The performance difference between ForSyn and other algorithms on F1 score under data 1–8. The y axis denotesDF1 between ForSyn and other comparison

algorithms, DF1 = F1comparison algorithms-F1ForSyn. A positive number indicates that the performance value of the comparison algorithm exceeds ForSyn, while a

negative number indicates that ForSyn is superior to the comparison algorithm.

(G) The impact of the number of base classifiers and the under-sampling ratio on performance of ForSyn’s RF-CSU unit. The y axis represents the F1 score, and

the x axis represents the under-sampling ratio for the majority class with a value range of 0.1–1. The blue, red, and green lines represent the RF-CUS unit

containing 100, 300, and 500 decision trees, respectively.

(H) The impact of the number of base classifiers and the retained feature dimension on performance of ForSyn’s ETF-DR unit.
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only uses a single type of unit (for example, ForSyn(ETFD*4)), it will

cause the ensemble diversity of the cascade layer to decrease,

which in turn leads to a decrease in the performance of the layer.

However, the combination of different type units will promote the

diversity of the cascade layer, which further improves the perfor-

mance of the overall model.

Therefore, the optimal configuration of ForSyn is to place two

RF-CUS units and two ETF-DR units in each cascade layer. Each

RF-CUS unit contains 100 decision trees, and the under-sam-

pling ratio is set to 0.4. Before training the ETF-DR unit, the pro-

posed dimensionality reduction method is used to sort the

feature space, and the first 1,806 dimensions of the sorted fea-

tures are retained as the training set. The number of base classi-

fiers in the ETF-DR unit is set to 100.

In addition, other tree-based forests are tested as the unit of

ForSyn, including ADAboost (ADA), BAGging (BAG), and

gradient boosting classifier (GBC). The base classifier of these

models is the decision tree, and the parameters use default set-

tings. Table 3 shows the performance comparison between the

ForSyn and these derivative models. Under five evaluation met-

rics, the performance of the proposed ForSyn with two RF-CUS

units and two ETF-DR units wins the best performance.

Subsequently, an ablation experiment on ForSyn is

performed (Table S8). First, five different type units are

placed on each cascade layer of DF, such as

DF(ADA*1+BAG*1+GBC*1+RF-CUS*1+ETF-DR*1), the performance of

this model can be regarded as a benchmark for ablation exper-

iment (0.562). Then the units will be removed to observe the

change of performance. As shown in Table S8, when the ETF-

DR unit is removed, the model performance drops the most, fol-

lowed by the RF-CUS unit. It can be inferred that the two units we

designed are more suitable as units in the cascade framework

than other decision tree ensembles.

Cellular experiments of novel drug combinations
To confirm the efficacy of ForSyn, we further apply ForSyn to

predict novel synergistic drug combination that have not been

tested before. The cellular experiment is carried out on the pre-

dicted novel drug combinations. All drugs are combined in pairs,

and the reported samples are removed. The remaining unmea-

sured samples are regarded as the novel drug combinations. Ac-

cording to the predicted probability of synergism class, eight

drug combinations in the HT29 colorectal cell line with top pre-

dicted probability (Table S9) are selected to perform the cellular

experiment. The synergistic potentials are observed on four drug

combinations in the HT29 cell line, including erlotinib hydrochlo-

ride and AZD1775, erlotinib hydrochloride and MK-5108, etopo-

side and gefitinib, and erlotinib hydrochloride and dinaciclib

(Figures 3A–3D).

Erlotinib hydrochloride is an inhibitor of the epidermal growth

factor receptor tyrosine kinase (EGFR-TK). The EGFR has

become an important therapeutic target for a variety of can-

cers.57,58 The alterations of EGFR lead to cell growth, invasion,

angiogenesis, and metastases. In colorectal cancer, 25%–77%

of tumors overexpress EGFR.59,60 There have been various

EGFR inhibitors, such as erlotinib, an EGFR-TK inhibitor. Erloti-

nib has demonstrated efficacy against a range of solid tumor

types including non-small-cell lung cancer (NSCLC), with more

modest effects in colorectal cancer in phase I and II clinical tri-

als.61–63 Although the response rate of erlotinib is not satisfactory

when used as monotherapy.64 The combination therapy of erlo-

tinib with other anticancer therapies should be more explored.

AZD1775 is a WEE1 inhibitor. It has been proved that the

WEE1 gene could repair the DNA damage, which would limit

the efficacy of DNA-damaging treatments in cancer cells.65

The erlotinib has been found to suppress DNA damage repair

in tumor cells.64 The combination erlotinib and AZD1775 may

enhance the sensitivity of tumor cells. MK-5108 is an Aurora-A

kinase inhibitor. The synergistic effect has been observed in

combined inhibition of the EGFR and Aurora-A pathways in can-

cer cells.66 Aurora kinase inhibitors are active in combination

with EGFR inhibition in a number of EGFR-mutant cell lines. Di-

naciclib is a CDK inhibitor for CDK2, CDK5, CDK1, and CDK9.

It has been reported that combined inhibition of EGFR and

CDK9 resulted in reduced cell proliferation, accompanied by in-

duction of apoptosis, G2-M cell-cycle arrest, inhibition of DNA

Table 2. Performance of ForSyn in different configurations under F1 score

ForSyn(RFC*2+ETFD*2) ForSyn(RFC*3+ETFD*3) ForSyn(RFC*4+ETFD*4) ForSyn(RFC*4) ForSyn(ETFD*4)

Data 1 0.499(2.5) 0.491(4.0) 0.499(2.5) 0.341(5.0) 0.510(1.0)

Data 2 0.496(3.0) 0.525(1.0) 0.501(2.0) 0.364(5.0) 0.477(4.0)

Data 3 0.519(3.0) 0.543(1.5) 0.543(1.5) 0.327(5.0) 0.460(4.0)

Data 4 0.529(1.0) 0.524(2.0) 0.519(3.0) 0.349(5.0) 0.475(4.0)

Data 5 0.568(3.0) 0.575(1.5) 0.575(1.5) 0.335(5.0) 0.497(4.0)

Data 6 0.551(1.5) 0.539(3.0) 0.551(1.5) 0.345(5.0) 0.473(4.0)

Data 7 0.564(1.5) 0.564(1.5) 0.547(3.0) 0.354(5.0) 0.493(4.0)

Data 8 0.572(1.0) 0.556(2.0) 0.547(4.0) 0.339(5.0) 0.551(3.0)

Average rank 2.1 2.1 2.4 5.0 3.5

The value in parentheses represents the ranking value of the corresponding performance. Taking data 8 as an example, the ForSyn(RFC*2+ETFD*2) on this

dataset has the best performance (0.572) and is assigned a ranking value of 1.0. In data 6, the performance of ForSyn(RFC*2+ETFD*2) and

ForSyn(RFC*4+ETFD*4) are the same (0.551), and they occupy the first and second positions, respectively, so their ranking values are uniformly assigned

1.5 ([1.0 + 2.0]/2). The average rank of each algorithm is defined as the average of its ranks on all datasets. RFC, RF-CUS unit; ETFD, ETF-DR unit; and

the number behind each unit represents the number of units of this type on each cascade layer. For example, ForSyn(RFC*2+ETFD*2) means that each

cascade layer is placed with two RF-CUS units and two ETF-DR units.
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replication and abrogation of CDK9-mediated transcriptional

elongation, in contrast to monotherapy.67

In addition, giving gefitinib together with etoposide may kill

more tumor cells (https://clinicaltrials.gov, NCT00483561). The

phase II trial is studying how well giving gefitinib and etoposide

works in treating patients with advanced prostate cancer that

did not respond to hormone therapy. Gefitinib may stop the

growth of tumor cells by blocking some of the enzymes needed

for cell growth and by blocking blood flow to the tumor. Etopo-

side works in different ways to stop the growth of tumor cells,

either by killing the cells or by stopping them from dividing.

Moreover, to investigate the potential false negatives of

ForSyn, we also pick up five drug combinations in the HT29

cell line predicted as negative (non-synergistic) with highest

probability to perform the same cellular experiment. The exper-

imental results are shown in Figures 3E–3I. It is observed that

all the five samples predicted by ForSyn as negative samples

are verified as negative by cellular experiments. The CI of three

drug combinations even exceeded 100, indicating the strong po-

tential of non-synergistic. This further demonstrates the predic-

tion accuracy of ForSyn in the negative samples.

Interpretable analysis of feature importance
Model interpretation is of paramount importance in machine

learning-based biomedical studies. In this study, ForSyn can

evaluate the importance of each feature in the prediction pro-

cess. ForSyn quantify the global relationship between each

feature and the output by evaluating the feature importance

value (FIV). Then, the FIVs extracted by ForSyn is analyzed

from three aspects, the association with prediction process,

the contribution of feature types, and the biological analysis of

key features. All the FIVs are calculated on data 8 because it con-

tains all the feature types.

Association with prediction process

First, two experiments are performed to show the relationship

between FIVs and prediction process from the global and local

perspectives, including the layer-by-layer error correction, and

the difference of FIVs between different layers.

ForSyn is a deep learning method with multiple layers, which

can be adaptively expanded according to the performance

gain. In this section, we trained a ForSynmodel with three layers,

the classification results and FIVs of each layer in ForSyn are

analyzed. In the first experiment, the layer-by-layer error correc-

tion capability of ForSyn is visualized in the feature space

through FIVs (Figures 4A–4C). The positive samples (synergistic

drug combinations) that are wrongly classified at each layer are

extracted. Then the top two features on the basis of the FIVs are

used to project the mis-classified samples into a two-dimen-

sional space. Figures 4A–4C shows the error correction result

of each layer. The blue dots represent the mis-classified positive

samples by the first layer of ForSyn. The red ‘‘+’’ represents the

samples that are correctly classified at the second and last layers

of ForSyn. From Figures 4A and 4B, the number of red plus signs

appearsmore, indicating that the growth of the layer brings a sig-

nificant performance improvement. In Figures 4B and 4C, the

number of red plus signs increases slightly, indicating that the

layer stops growing and the performance gradually converges.

In addition, there are samples that cannot be corrected in the

final layer, some of which may be related to the correctness of

labels in the dataset. There may still be several incorrectly

labeled noisy samples in the dataset because of the existence

of experimental noise, as mentioned by Malyutina et al.68

In the local analysis of the association with prediction process,

the difference of FIVs between different layers is evaluated. The

FIV of each feature in the lth layer is calculated according to

Equation 12 in STAR Methods. Then a rank vector is generated

by sorting the FIVs of all features, so as to generate the rank vec-

tors of three layers of ForSyn. Finally, the Wilcoxon signed rank

test69 is used to evaluate the significant differences between

the three rank vectors. The p value for layer 1 vs. layer 2 is

0.958, and that for layer 2 vs. layer 3 is 0.972. The original hypoth-

esis of this test is that there is no significant difference between

paired vectors. Both p values are greater than 0.05, failing to

reject the original hypothesis. That is, there is no significant dif-

ference between the paired FIVs’ rank vectors in the layers of

ForSyn.

Contribution of feature types

The key features based on FIVs are then analyzed. The most

contributing feature type is first investigated. The feature set is

composed of four feature types, DMF, DPP, DGE, and CGE.

When analyzing the FIVs, it should be noted that not all features

participate in the whole prediction process. In the ETF-DR unit of

ForSyn, a greedy dimension reduction method is applied to

select 1,806-dimensional (see Parameter analysis) features to

achieve the prediction task. Therefore, only the 1,806 features

participate in the whole prediction process, including 1,037

DMFs, 31 DPPs, 600 DGEs, and 138 CGEs. The FIV of each

feature is shown in Figure 4D. The red line in Figure 4D repre-

sents the average FIV of all features, which is 0.000554 (1/

1,806). Figure 4E divides the features into two groups, the fea-

tures that are greater than and less than the average FIV. It

further shows the contribution of each feature type in the two

groups. The contribution is calculated by summing the FIVs of

features in a feature type. From Figures 4D and 4E, 768 features

are greater than the average FIV, and the contributions of the 768

features are accounted for 74%. Therefore, we believe that these

768 features are top contributing features for prediction process.

Among the 768 features, there are 107 DMFs, 17 DPPs, 582

DGEs, and 62 CGEs, with contributions of 15.35%, 2.86%,

49.70%, and 6.09%, respectively (Figure 4E). The results show

that DGE plays a key role in the prediction process. Although

there are many DMFs among 1,806 features, the contribution

of most DMF features is lower than the average FIV

(Figures 4D and 4E).

Table 3. Performance comparison of deep forest embedding

different units based on data 8

Configuration F1 score AUPR Recall MCC G-mean

DF(ADA*2+BAG*2) 0.500 0.582 0.384 0.509 0.614

DF(ADA*2+GBC*2) 0.484 0.559 0.350 0.508 0.588

DF(BAG*2+GBC*2) 0.493 0.561 0.365 0.512 0.598

DF(RF-CUS*2+ETF-DR*2) 0.572 0.591 0.537 0.535 0.722

DF, deep forest; ADA, ADAboost; BAG, BAGging; GBC, gradient boost-

ing classifier.
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Biological analysis of key features

Next, the biological analysis is performed on the key DGE fea-

tures extracted by ForSyn. The 479 genes (with duplication

removed) involved in the 582 DGE features that are greater

than the average FIV are extracted. A global analysis on the ex-

tracted genes is carried out, including two kinds of gene enrich-

ment analysis on Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway and Gene Ontology Biological Process

(GOBP). Enrichment results show that these genes are signifi-

cantly enriched in 67 KEGG pathways and 518 GOBPs (adjusted

p < 0.01). The top 20 enrichment results are shown in Figures 4F

and 4G. KEGG pathway enrichment result shows multiple signif-

icant biological pathways that are closely related to cancer (Fig-

ure 4F). According to the characteristics of these pathways, they

can be divided into four categories: specific cancer pathways

(colorectal cancer, pancreatic cancer, etc.), regulation process

of cancer (cellular senescence, cell cycle, etc.), oncogenic virus

infection (Kaposi sarcoma-associated herpesvirus infection,

etc.) and immune inflammation (lipid and atherosclerosis, etc.).

For enrichment result of top 20 GOBP (Figure 4G), the key genes

are more concentrated in the response to stimulus, especially

the response to oxidative stress.

After the global analysis of the key genes, the cancer-specific

key genes in DGE in different cell lines are further investigated.

Four cell lines (HT29, A549, MCF7, and PC3) with more than

500 samples are selected to train the ForSyn respectively.

Then the key DGE features with top FIVs of four cell lines are

obtained. The top 10 genes involved in these key DGE features

may play a key role in corresponding cancer cell lines, as

shown in Table S10. For example, in A549 lung cancer cell

line, CCND3 and TSPAN14 genes are identified as the top

contributing genes. Song et al.70 proposed that CCND3 could

serve as potential biomarkers and provide a theoretical basis

for the pathogenesis of lung adenocarcinoma. And TSPAN14

gene is also proposed as an indicator of NSCLC metastasis

and progression.71 In the HT29 colorectal cell line, the

A B C

D E F

G H I

Figure 3. The result of cellular experiment of ForSyn

(A–D) The effect-CI plot of top predicted synergistic drug combinations tested in the HT29 cell line. CI < 1 indicates that the drug combination has synergistic

effect, while CI > 1 indicates the non-synergistic effect.

(E–I) The effect-CI plot of top predicted non-synergistic drug combinations tested in the HT29 cell line.
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CAMSAP2 gene has been proved to be a promising therapeutic

target for the treatment of metastatic colorectal cancer

patients.72 PLOD3 has also been proved to be a potential

biomarker for CRC diagnosis and prognosis prediction.73 In

MCF7 breast cancer cell and PC3 prostate carcinoma cell

line, the top contributing genes, PGM1 and SPRED2, as well

as SIRT3 and UFM1, are also proved to play a key role in breast

and prostate cancers.74–78

DISCUSSION

In this study, we propose a new algorithm, ForSyn, to predict

synergistic drug combinations in different cancer cell lines.

Two novel forest types are designed to embed in ForSyn,

including the RF-CSU unit dealing with data imbalance and the

ETF-DR unit dealing with high-dimensional features. The

ForSyn can effectively solve the problems of class imbalanced,

A B C

D E

F
G

Figure 4. The interpretable analysis result of ForSyn
(A–C) The top two features sorted by FIVs are used to visualize the ForSyn’s layer-by-layer error correction of mis-classified positive (synergistic) samples. The

blue dots represent the mis-classified positive samples by the first layer of ForSyn. The red plus sign represents the samples that are correctly classified at the

second and last layers of ForSyn.

(D) The FIV of each feature in four feature types. The red line indicates the average FIV all features.

(E) The contribution of each feature type in two groups, which are the features that are greater than and less than the average FIV.

(F and G) The top 20 enrichment results of KEGG pathway and Gene Ontology Biological Process, which are obtained by key genes involved in the key DGE

features.
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and high feature dimension in the medium-scale datasets.

Compared with 12 advanced algorithms on five metrics,

ForSyn ranks first in four metrics, F1 score, AUPR, MCC and

G-mean. Two statistical tests confirm that ForSyn perform signif-

icantly better than other algorithms in most cases. Next, the

different configurations of ForSyn are analyzed. The results

show that the under-sampling ratio for the majority class in RF-

CSU, the feature dimension of the training sample in ETF-DR,

the number of base classifiers, the types and numbers of units

have influence on the performance of ForSyn. In addition, the

novel synergistic drug combinations predicted by ForSyn are

verified by cellular experiment, showing the predictive ability of

ForSyn. Finally, a systematic interpretable analysis of the FIVs

evaluated by ForSyn is performed. The layer-by-layer error

correction and the difference of FIVs between different layers

show the association between FIVs with prediction process.

By summing the FIVs of each feature type, the DGE has been

proved to play a critical role in the prediction process. Then

the key genes involved in the key DGE features are explored

by enrichment analysis. The key genes extracted by ForSyn

may have potential effects on corresponding cancers.

Two forest types are designed in ForSyn, including RF-CSU

and ETF-DR. The reason for choosing RF and ETF is that both

models have their own advantages in dealing with high-dimen-

sional and unbalanced data. The RF selects
ffiffiffi

d
p

(where d is the

dimension of the training data) features for each decision tree.

Thus, the high feature dimension will not have a great negative

impact on the performance of the RF, and effectively solving

the problem of data imbalance is the key factor to improve the

performance of RF. In the ETF model, the tree will continuously

grow until each leaf node contains samples of the same class.

Thus, the ETF has some advantages when dealing with imbal-

anced data. For example, the pure leaf node that stores minority

samples can effectively identify unknown minority samples.

However, the high feature dimension and the behavior of

randomly selecting the feature, which deepens the depth of

the tree and easily causes over-fitting. The effective dimension

reduction methods may reduce computational cost and avoid

over-fitting of the ETF. Thus, to obtain an excellent model to

deal with the imbalanced and high-dimensional data, we design

the modules of imbalanced data process and dimensionality

reduction on RF and ETF respectively.

For the input feature data, the DGE andCGE can be quickly ob-

tained at low cost through L1000 method or published predicted

modelswhen there are newdrugs and cell lines to be predicted. In

this study, the DGE and CGE are obtained from the National Insti-

tutes of Health (NIH) Library of Integrated Network-BasedCellular

Signatures (LINCS)79 database. In LINCS database, the data are

obtained using the L1000 method, which is a low-cost, high-

throughput method and only needs 1,058 probes for 978 land-

mark transcripts and 80 control transcripts. The reagent cost of

the L1000 assay is approximately $2. The 978 landmarks have

been shown to be sufficient to recover �80% of the information

in the full transcriptome. In addition, DGE and CGE also can be

generated or predicted by machine learning models.80,81 For

example, Zhu et al.80 have proposed a deep learning-based

model, DLEPS, using SMILES of molecules to predict the

978-dimentional DGE obtained from LINCS database. DLEPS

has been validated in the use of screening potential drugs in

obesity, hyperuricemia and nonalcoholic steatohepatitis.

ForSyn has shown an excellent predictive performance in drug

combination prediction, which is validated by computational and

biological experimental results. The novel units designed in

ForSyn can largely solve the problems of imbalanced and

high-dimensional data. Both are common problems in the data-

sets of drug-related biomedical studies. We hope that the pro-

pose of ForSyn can not only apply narrow down the candidates

of drug combinations for experimental validations but also pro-

vide insights for other studies in drug discovery.

Limitations of the study
Although ForSyn shows excellent prediction performance and

interpretability, this study is limited by the number of training

samples when using DGE and CGE as features. The importance

of DGE has been shown in this study. In future work, we expect

that the scale of the training dataset will expand with the accu-

mulation of DGE, and the performance and interpretability of

EC-DFR would be further improved accordingly. In addition,

the predictive model cannot generalize well on novel drugs or

novel cell lines, which is an inherent problem in drug combination

prediction and should be explored in future work. Finally, some

potential drug combinations and key genes has been found on

the basis of ForSyn. The key factors should be further investi-

gated through more biological experiments.
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SUMMARY

Early and accurate detection of side effects is critical for the clinical success of drugs under development.
Here, we aim to predict unknown side effects for drugs with a small number of side effects identified in ran-
domized controlled clinical trials. Our machine learning framework, the geometric self-expressive model
(GSEM), learns globally optimal self-representations for drugs and side effects from pharmacological graph
networks. We show the usefulness of the GSEM on 505 therapeutically diverse drugs and 904 side effects
from multiple human physiological systems. Here, we also show a data integration strategy that could be
adopted to improve the ability of side effect prediction models to identify unknown side effects that might
only appear after the drug enters the market.

INTRODUCTION

Side effects of drugs are typically identified through randomized

controlled clinical trials. It is well known that many side effects

cannot be observed during clinical trials due to limitations in

sample size and time frames. Postmarketing surveillance pro-

grams, such as the Adverse Event Reporting System (AERS),

were designed to assist in the identification of side effects after

the drug entered the market. However, the late identification of

drug side effects is known to cause high morbidity and mortality

in public healthcare,1,2 the re-assessment of drug safety through

new clinical trials,3 and the possible withdrawal of drugs from the

market.4

A wide range of computational approaches have been pro-

posed to predict the side effects of drugs at different stages of

the drug development process (see reviews by Ho et al.5 and

Boland et al.6). The first group of methods is applicable during

pre-clinical drug development when only chemical, biological,

and pharmacological information is available. These methods

exploit chemical features,7–11 protein targets,12 and pathway

information,13 often in combination with protein networks,14

and, in general, they offer a modest accuracy. A second group

of methods was proposed for the postmarketing phase of drug

development.15–19 These methods exploit the side effects

collected in clinical trials and the postmarketing phase to predict

other unknown side effects. Our study differs from thesemethods

in that we assumed that only side effects identified during clinical

trials are available. This represents a more challenging scenario

due to information sparsity and selection bias.20,21 Our goal is

2-fold: (1) to simulate the realistic scenarios faced by safety pro-

fessionals working in clinical drug development and (2) to provide

a computational tool that can assist in the early detection of side

effects of drugs undergoing clinical trials.

A critical application of our approach is during the different

phases of clinical trials, where computational predictions can

be used as a hypotheses generator to set the direction of the

risk assessment. Our approach uses a matrix completion model

that we called the geometric self-expressive model (GSEM). This

is based on our objective function and multiplicative learning

algorithm, which learns globally optimal solutions. Our model

MOTIVATION Drug side effects cause significant morbidity and mortality in healthcare. Side effects are
discovered and added to the drug label during randomized controlled trials, but, due to trials’ limited sample
sizes, severe side effects are often discovered after the drug enters the market. An important question is
whether we could use artificial intelligence to predict unknown side effects using the side effects identified
during drug clinical trials. We studied this problem and developed a machine learning framework for pre-
dicting side effects for drugs undergoing clinical development.
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exploits known drug side effect associations and integrates

graph structure information from chemical, biological, and phar-

macological data. Here, we also show that predicting side ef-

fects that were identified after the drug entered the market

from the information available during clinical trials is challenging.

We attributed this to a distribution shift in side effect reports be-

tween clinical trials and postmarketing. This observation moti-

vated a simple data integration technique that can be used to

significantly improve the performance of GSEM at identifying

side effects that might appear after the drug enters the market.

RESULTS

GSEM
Our starting point is the n3m drug side effect associationmatrix

X, where xij = 1 if drug i is known to induce side effect j, or xij = 0

otherwise. Drugs can be related by their similarities in chemical

structure, biological targets, and pharmacological activity. Side

effects can also be related by their similarities in anatomical/

physiological phenotypes. Our method integrates drug and

side effect information by learning two similarity matrices: a

drug similarity matrixH˛Rn3n such that XxHX and a side effect

similarity matrix W such that XxXW. The GSEM generates

scores for each drug-side effect pair by linearly combining these

models:

bX = HX +XW: (Equation 1)

The first term in Equation 1 is the drug self-representation

model, and the second term is the side effect self-representation

model. To learn W and H, we minimize the following objective

functions:

min
W

1

2
kX � XWk2F

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

self � representation

+
a

2
kWk2F +bkWk1

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

sparsity

+
X

i

mi

2
kWk2D;Gi

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

smoothness

+gTrðWÞ
|fflfflfflffl{zfflfflfflffl}

diagonal

such that WR 0

(Equation 2)

and

min
H

1

2
kX � HXk2F

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

self � representation

+
c

2
kHk2F +dkHk1

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

sparsity

+
X

j

aj

2
kHk2D;Gj

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

smoothness

+ gTrðHÞ
|fflfflffl{zfflfflffl}

null diagonal

such that HR 0

(Equation 3)

where k:kF denotes the Frobenius norm. We shall explain each

term in Equation 2 only, as the same rationale can be applied

to Equation 3. The first term in Equation 2 is the self-representa-

tion constraint, which aims at learning a self-representation ma-

trix W such that XW is a good reconstruction of the original ma-

trix X. The second term, in which a;b> 0 are constant values, is

the sparsity constraint, which uses the elastic-net regularization

known to impose sparsity and grouping effect.22,23 The third

term in Equation 2 is the smoothness constraint,24–26 incorpo-

rating geometric structure into the self-representation matrix W

from a given side effect similarity graph Gi, with Gi = ðf1; :::;

mg;E i;AiÞ, i.e., the weighted undirected graph with edge weights

Aij > 0 if ði; jÞ˛ E and zero otherwise. The smoothness constraint

is important because it allow us to integrate into the model side

information about side effects in the form of graphs. For a given

side effect graph G, the idea is that nearby points in G should have

similar coefficients in W, which can be obtained by minimizing

X

i;j

Aijkwi � wjk2 = Tr
�

WLWT
�

: = kWk2D;G; (Equation 4)

wherewi andwj represent column vectors ofW and L = D � A is

the graph Laplacian with D = diagðPjaijÞ. The constant values

mi > 0 in Equation 2 weigh the importance of the smoothness

constraint for the prediction. When multiple graphs are com-

bined, the parameters mi in Equation 2 tell us about the contribu-

tion and importance of the individual graph information for the

prediction model. The fourth term in Equation 2 is a penalty for

diagonal elements to prevent the trivial solution W = I (the iden-

tity matrix). Typically, g[0 is used. The last constraint in Equa-

tion 2 is a non-negative constraint,27 which is added here to favor

interpretability of the learned W.

Figure 1 depicts an overview of our GSEM. The starting point is

the matrix X containing binary associations encoding the pres-

ence or absence of drug side effects. The GSEM learns the

self-representation matrices H and W that minimize our loss

functions in Equation 3 and 2, respectively, by employing an iter-

ative algorithm that uses a simple multiplicative update rule (see

STAR Methods). Our algorithm is inspired by the diagonally re-

scaled principle of non-negative matrix factorization.27 GSEM

is fast to run, and it does not require setting a learning rate or

applying a projection function. Our algorithm also satisfies global

guarantees of convergence given by the Karush-Kuhn-Tucker

(KKT) complementary conditions (proof in Methods S2). Having

learned independently H and W, we calculate bX = HX +XW.

Notice that while X contains binary values ½0;1� that correspond
to our original data, bX contains real positive numbers that are our

predicted scores.

Overview of evaluation
To obtain side effects identified in clinical trials, we followed the

procedure in Galeano et al.28 to retrieve side effects reported in

randomized controlled studies from the Side Effect Resource

(SIDER) 4.1.21 27,610 associations were obtained for n = 505

marketed drugs and m = 904 unique side effect terms. We

also collected side effects identified after the drugs entered the

market from two independent sources. 6,818 side effects

reported in the postmarketing section of drug leaflets were ob-

tained from the SIDER database (SIDER postmarket set).

25,797 statistically significant side effects reported in the AERS

were obtained from the OFFSIDES database29 (OFFSIDES post-

market set). The collection of drug side effect data used in our

study is shown in Figure 2A.

Our goal is to assess the performance of the GSEM at predict-

ing unknown side effects for drugs with a small number of side

effects identified in clinical trials. Therefore, only side effects

identified in clinical trials were used for training the model. Fig-

ure 2B illustrates how the clinical trials’ side effects were

randomly split into training, validation, and testing sets.
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Following previous approaches,15–19 we framed our problem as

a binary classification problem and used the area under the

receiving operating curve (AUROC). The validation set consisted

of 10% randomly held-out clinical trials side effects and

randomly selected negatives of twice the number of positives.

We used the validation set to tune the model hyperparameters.

We then performed the evaluation by training the model with

the combined training and validation sets using the optimal hy-

perparameters. We measure the AUROC and the area under

the precision-recall curve (AUPR) on three test sets (see Fig-

ure 2C): (1) a held-out test set from randomly selected side ef-

fects identified in clinical trials, (2) postmarketing side effects

from the SIDER database, and (3) postmarketing side effects

from the OFFSIDES database.

We compared the prediction performance of the GSEM with a

representative number of side effect prediction models that can

also be applied to our problem: (1) matrix factorization (MF);16 (2)

predictive pharmacosafety networks (PPNs);15 (3) inductive ma-

trix completion (IMC);17 and (4) feature graph-regularized MF

(FGRMF).18 Each side effect prediction model integrates

different types of complementary information about drugs and

side effects. We collected and used five types of side information

for our study. For drugs, we obtained the chemical structure and

protein targets from DrugBank,30 indications from the Drug

Repositioning Hub,31 and Anatomical, Therapeutic, and Chemi-

cal (ATC) classification (see STAR Methods). We used MACCS

fingerprints32 to represent chemical structure and computed Ta-

nimoto similarity using RDKit.33 For side effects, we obtained the

Medical Dictionary for Regulatory Activities (MedDRA) terminol-

ogy. To build graphs from the different side information, we

calculated the adjacency matrices using similarity measures

(see STAR Methods). For the ATC and MedDRA terms, we also

obtained their corresponding hierarchies to calculate taxonomy

similarities that have been used by previous approaches.15,17

Evaluation of prediction performance on multiple drugs
Figure 3A shows the AUROC performance of the side effect pre-

diction models at recovering missing drug-side effect associa-

tions in the held-out test set. Following a common practice in

the literature,15,17,18 we performed an ablation study. First,

whenever possible, each method was trained using only the

training matrix X without other side information (see first row in

=

× =

H2N

NH

H
N

NH

CH3

N
CH3

     Metformin 
self-representation

  Drugs associated to 
  Myocardial infarction
       

          Presence / absence of MI in patients on Metformin
2.5

≈

sc
or

es

0

D
ru

gs

Side effects

Xmax
V

VX
unknownidentiϐied in clinical trials

D
ru

gs

Side effectsXDrug side effect data

D
ru

gs

Side effectsXD
ru

gs HDrugs

× + ×

Side effectsW

Si
de

 e
ffe

ct
s

Drug self-representation model Side effect self-representation model

Chemical Indications Drug targets ATC Taxonomy

Drug networks

MedDRA Taxonomy

Side effect network

argatroban

cyproterone

D
ru

gs

Side effectsX

argatroban

cyproterone

+
         Side effects associated to
                  Metformin

H
yp

og
ly

ca
em

ia

D
ys

pe
ps

ia

D
ia

rr
ho

ea

N
au

se
a

Myocardial infarction
  self-representation

× Hypoglycaemia

Dyspepsia

Diarrhoea

Nausea

Figure 1. Geometric self-expressive model (GSEM)

27,610 associations identified on clinical trials for 505 drugs and 904 side effects were collected from the SIDER 4.1 database. The associations were ar-

ranged into an n 3 m matrix X by encoding their presence ð = 1Þ. Unknown associations were encoded with zeros ð = 0Þ. Our algorithm learns two similarity

matrices that model the two pharmacological spaces of drug side effects. H (of size n 3 n) encodes similarities between drugs that are learned from drug

networks built from chemical, indication, target, and taxonomy similarities. W (of size m3 m) encodes similarities between side effects that are learned from

physiological relationships between side effects. The GSEM learns independently H and W such that XxHX and XxXW. By linearly combining these models,

HX +XW, we obtain bX , which models X, and where all the entries are replaced by real numbers—these are our predicted scores. Note that values replacing

zero entries in X will constitute our predictions. Rows of H are drug self-representations, and columns of W are side effect self-representations. The lower

illustration depicts how our model discovers a drug self-representation vector for the anti-diabetic drug metformin, and a self-representation vector for the

side effect myocardial infarction (MI), such that the dot product of these vectors with the binary vector corresponding to known drugs for MI and known side

effects of metformin, respectively, models the presence/absence of MI in patients on metformin. The body parts infographic vector was created by mac-

rovector www.freepik.com.
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Figure 2. Evaluation procedure

(A) Drug side effect data were integrated from the SIDER 4.1 and OFFSIDES databases. They include a set of associations identified in clinical trials (red) and two

sets of associations identified after the drugs entered the market: a postmarketing set from SIDER (blue) and OFFSIDES (green).

(B) The clinical trials association set was randomly split into training, validation, and test sets. Hyperparameters of each prediction model were tuned using the

validation set. Each model was re-trained on the combined training and validation sets using optimal hyperparameters.

(C) Our test sets consisted of the held-out test set from the clinical trials set and the postmarketing sets from SIDER and OFFSIDES. Each positive set of

associations was matched with a set of negatives twice their size, randomly selected.
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Figure 3. Performance evaluation on multiple drugs

Each model (x axis) was trained with drug side effect associations obtained from clinical trials, without other information (first row, y axis), or in combination with

one side information type at a time (chemical, indication, target, and taxonomy similarities): second to fifth rows. Themethods that proposed amodel to integrate

multiple side information are indicated as the integration model in the last row of the heatmap. Area under the receiver operating curve (AUROC) is shown only for

the side information types used in the original publications of each competitor. Gray cells represent N/A. The binary classification performance is shown for three

independent test sets.

(A) (Red) Held-out test set containing other clinical trials side effects.

(B) (Blue) Postmarketing side effects from the SIDER database, containing side effects reported in package inserts that were identified after the drugs entered the

market.

(C) (Green) Postmarketing side effects from the OFFSIDES database, containing statistically significant side effects from the Adverse Event Reporting System

(AERS) surveillance database.

(D) Drug-specific performance according to its main category according to the Anatomical, Therapeutic, and Chemical (ATC) classification. (Left) AUROC in the

SIDER postmarket test set; (right) AUROC in the OFFSIDES postmarket test set.
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Figure 3A). Second, if possible, one side information at a time

together with X was integrated into the model to assess its

contribution to the overall performance (second to fifth rows in

Figure 3A). In these experiments, we run each method with the

side information types proposed in the original publications

(see Methods S1). Finally, if the original publications proposed

a way to integrate multiple information types (more than one) in

their framework, we implemented them, and their performance

is shown in the last row of Figure 3A. Notice that the GSEM, as

proposed in Equations 3 and 2, is amodel that allows for the inte-

gration of multiple types of heterogeneous information.

On the held-out test set with other side effects identified in

clinical trials, the GSEM outperforms all the competitors by

1.4%–13.3%. Even when training GSEM using the training ma-

trix X alone, i.e., without side information, the GSEM achieves

0.940 in terms of the AUROC. This baseline performance can

be slightly improved using side information for drugs and side ef-

fects. Other methods, such as PPNs15 and IMC,17 also show a

similar trend; therefore, side information should be used when

available. In addition, we observed that while the competitors’

performance ismore sensitive to the specific choice of side infor-

mation, the performance of the GSEM displays a small variability

across information types. The mean and SD AUROCs in the

held-out test set are 0.9421 ± 0.0012 (GSEM) versus 0.9079 ±

0.0207 (FGRMF), 0.8405 ± 0.0026 (IMC), and 0.9239 ± 0.0212

(PPNs). GSEM also consistently outperforms the competitors

in terms of the AUPR (Figure S1).

We then tested our method in a more realistic scenario using a

simulated prospective evaluation similar to the one used byCami

et al.15 In this procedure, all side effects identified after the drugs

entered the market were used as a test set (postmarket test sets

in Figure 2B). Figures 3B and 3C show the prediction perfor-

mance of the methods in postmarketing test sets. The GSEM

outperforms the competitors by 1.5%–14.8% in the SIDER post-

market test set and by 0.7%–4.6% in the OFFSIDES postmarket

test set.

Interestingly, the GSEM offers the best prediction performance

in both prospective sets when combining all available side infor-

mation. Following Cami et al.,15 we further asked whether the

performance of the models varies for drug- or side effect-specific

categories.We performed a second evaluationwherewe used the

best-performing models of each column of Figure 3A to analyze

the performance of a specific group of drugs and side effects

(see STAR Methods). Figure 3D shows the AUROC performance

of the models for drug-specific anatomical categories according

to their primary ATC classification. For most categories, the

GSEM’s mean AUROC was above 0.75 in the SIDER postmarket

test set—we obtained the lowest AUROC performance for ner-

vous system drugs (0.706) and the highest performance for respi-

ratory system drugs (0.852). In the OFFSIDES test set, the mean

AUROC was above 0.55 for all the categories. The performance

of themodels for the side effect-specificMedDRAcategory of dis-

orders are shown in Figure S2.

Distribution shifts in side effects reported before and
after the drugs enter the market
An important observation from Figures 3A–3C is that there is a

considerable difference in AUROCperformance when predicting

other side effects from clinical trials (GSEM AUROC of 0.944)

versus postmarketing (GSEM AUROCs of 0.728 and 0.618 in

the SIDER and OFFSIDES postmarket sets, respectively). These

differences cannot be explained by the specific method used or

the type of side information used in the integration. The differ-

ences in prediction performance prompted us to ask whether

they can be explained by a distribution shift in side effect reports

before and after the drug enters the market.

To analyze differences in reporting trends, we defined the ratio

of reporting frequency (RRF) as the normalized count of drugs

associated with a given side effect (see STAR Methods). The

RRF reflects whether a side effect has been associated with

many or few drugs in our dataset. For instance, nausea, a side

effect reported on most drugs, has an RRF of 1.0, while eye

infection, reported only on a few drugs, has an RRF of 0.011.

We contrasted the RRF of each side effect computed using clin-

ical trial associations versus postmarketing associations.

Figures 4A and 4B show that side effects reported in clinical trials

and postmarketing follow a different trend. A side effect reported

on a small number of drugs in clinical trials (low RRF in the x axis)

can be reported onmany drugs in the postmarketing phase. This

trend is even more prominent in the OFFSIDES postmarket set.

For comparison, the expected trend without distribution shift is

shown in Figure 4C for a held-out set from clinical trials associa-

tions (Pearson, r = 0:923, p < 2.23 3 10�308). Our results

suggest differences in reporting trends between drug side effect

associations reported in clinical trials and the postmarketing

phase.

We further explored whether there are statistically significant

differences in RRF values for drug anatomical classes and side

effect disorder types. We grouped drugs by their main ATC clas-

sification and compared distributions of RRF values based on

the known side effects reported in different sets (see STAR

Methods). Figure 4D shows that for the majority of drug cate-

gories, the side effects that were reported in clinical trials tend

to be biased toward frequently reported side effects except for

nervous system drugs. Conversely, while the SIDER postmarket

set tends to be more significant toward rarely reported side ef-

fects in clinical trials, the OFFSIDES set was more significant

for frequently reported side effects. We repeated our statistical

analysis by grouping side effects based on their main MedDRA

category of disorders. Figure 4E shows that side effect cate-

gories are significant toward rarely reported side effects, i.e.,

low RRF values.

A fundamental assumption in machine learning is that the

training and testing sets are drawn from the same underlying

distribution.34 Our analysis in Figure 4 shows that this is not

the case for our problem. We hypothesized that the distribution

shifts in side effect reports between clinical trials and postmar-

keting could explain the differences in prediction performance

that we observed in Figures 3A–3C. It would imply a depen-

dency between the AUROC performance and the RRF values

of the side effects in the test set. To explore this dependency

in more detail, we calculated AUROC values for single drugs

on the SIDER postmarket test set. Figure 5 shows a correlation

between prediction performance and the RRF values of the

side effects we are trying to predict. A positive correlation is

observed for all the methods, suggesting that each drug’s
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Figure 4. Differences in the distribution of side effect reports in clinical trials and postmarketing drug development phases

Side effect ratio of reporting frequency (RRF) is a normalized count of drugs associated with a given side effect. Each point represents a side effect, and the RRF

values of side effects identified in clinical trials are compared against (A) the RRF of of side effects identified in postmarketing as found in the SIDER database

(Pearson, r = 0:377, p < 5.1 3 10�3.2); (B) the RRF of side effects identified in postmarketing as found in the OFFSIDES database (Pearson, r = 0:192,

p < 6.4 3 10�9); and (C) the a held-out set (Pearson, r = 0:923, p < 2.23 3 10�308). The size of the circle is proportional to the RRF values.

(D and E) Statistical analysis of side effect RRF significance for (D) ATC group of drugs and (E) MedDRA-group of side effects. Only statistically significant

associations are shown (one-tailed Wilcoxon rank-sum test with Benjamini-Hochberg adjusted significance, p < 0.05). The circle size represents the significance

(p value), and the color encodes the effect size of the association—the difference between themedian in the group compared with the median of all drugs (or side

effects). Colors separated the effect size to indicate whether the one-tailed significance was right-tailed (red palette) or left-tailed (blue palette).
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prediction performance depends on the magnitude of the distri-

bution shift.

Reported side effects inOFFSIDEShave even lower RRF values

than those in SIDER (see Figure S3), thus explaining the differ-

ences in AUROC performance between SIDER and OFFSIDES

postmarket sets in Figures 3B and 3C, and Figure S4 shows

that the AUROC per drug varies by category depending on the

RRF values of the side effects in the postmarketing test sets.

A data integration technique to improve prediction
performance
We propose a simple data integration technique to improve the

prediction performance of side effect prediction models for indi-

vidual drugs. Our idea is based on the observation that the effect

of the distribution shift can be reduced if we integrate postmar-

keting data into the training matrix X. Figure 6B shows that the

RRF values of specific side effects can be improved using post-

marketing information in training.

Figure 6A illustrates our evaluation procedure for single drugs.

For a given drug x, we used its clinical trials side effects for

training and its combined SIDER and OFFSIDES postmarketing

side effects for testing. Then, we assessed the AUROC perfor-

mance using two strategies that differ in the information used

for the other drugs. The first strategy uses only side effect asso-

ciations reported in clinical trials. The second strategy uses side

effect associations reported in clinical trials and postmarketing.

To prevent data leakage, we removed other chemically similar

drugs from the training matrix X (see STAR Methods). Notice

that for both strategies, we trained each method using the

same set of optimal hyperparameters obtained in the validation

set, as shown in Figure 2.

Figures 6B and 6C shows the AUROC performance of the

side effect prediction models using strategies 1 and 2. The in-

clusion of the postmarketing side effects for the other drugs

used for training dramatically affected the prediction perfor-

mance for single drugs. The mean AUROC improved from

0.604 to 0.667 for MF; 0.512 to 0.537 for IMC; 0.596 to 0.650

for FGRMF; 0.60 to 0.733 for PNN; and 0.616 to 0.746 for the

GSEM. Our method shows a 13% performance improvement

using strategy 2.

Median RRF of side effects in SIDER test set

Median RRF of side effects in SIDER test set Median RRF of side effects in SIDER test set

m
ed

ia
n 

R
R
F

Figure 5. Dependency between prediction performance and side effect RRF value
Eachmodel generated scores by training with clinical trials’ side effects and side information. Models were then assessed, for each drug, in their ability to identify

the presence or absence of postmarketing side effects (SIDER postmarket test set) out of all the unknown side effects for the drug. Each dot in the figure

represents an individual drug. The performance per drug is shown in the AUROC (y axis) versus themedian RRF of the side effects in the test set (x axis). There is a

direct correlation between the prediction performance of the each model and the median RRF value of the side effects in the test set: MF (Pearson

correlation, r = 0:53; p< 3:543 10� 16); IMC ðr = 0:51; p < 1:40 3 10�14Þ; PPNs ðr = 0:55; p < 2:85 3 10�17Þ; FGRMF ðr = 0:45; p < 2:50 3 10�11Þ; and
GSEM ðr = 0:68; p < 4:11 3 10� 28Þ. Each point represents a drug, and the circle’s size is proportional to the median RRF.

8 Cell Reports Methods 2, 100358, December 19, 2022

Article
ll

OPEN ACCESS



A

B C

Figure 6. A data integration strategy for predicting postmarketing side effects for drugs in clinical trials

(A) Evaluation procedure for single drugs to predict side effects identified after the drugs enter the market (postmarketing) using for training side effects identified

in clinical trials. For a given drug x, we performed two evaluation strategies that change the set of associations used for the other drugs in X: (1) uses only clinical

trials side effects and (2) uses clinical trials and postmarketing side effects. Side effects chemically similar to drug xwere removed from the trainingmatrix to avoid

data leakage (illustrated as drugs u and v).

(B) Comparison of side effect RRF values when using only clinical trials associations (x axis) and when also including also the postmarketing associations (y axis).

Each point represents a side effect, and the circle’s size is proportional to the RRF when including postmarketing side effects. Several side effect terms are

indicated.

(C) Boxplots of the AUROC per drug on the combined postmarketing test sets using strategies 1 and 2. The distribution of AUROC values for the GSEM using

strategy 2 is significantly better than that of the best competitor (PPN) (one-tailed Wilcoxon rank-sum test p < 0.0015).
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Self-representations capture biological relationships
Two propertiesmake theGSEMan interpretable and reproducible

model. First, the GSEM is interpretable because the predicted

score can be explained in terms of learned similarities between

drugs and side effects. Second, the GSEM’s solutions are repro-

ducible because the learned solution is a globally optimal solution

of its objective function. TheGSEMovercomes the commonprob-

lem of machine learningmodels that learn different solutions even

when training the same model with a different random initializa-

tion, which is persistent in deep-learning models.35

The GSEM’s predicted score for a drug i and side effect j can

be written as follows:

bXij =
X

u ˛drugs known to
cause side effect j

Hiu +
X

v ˛ side effects caused
by drug i

Wvj; (Equation 5)

where H and W are non-negative. The first term in Equation 5

contains the learned similarities between drug i and the drugs

known to cause side effect j. The second term in Equation 5 con-

tains the learned similarities between side effect j and the side

effects known to be caused by drug i. If any of the individual

terms in the sum is high, the prediction score bXij will be high

because the model allows only for summation and not the sub-

traction of terms.

We hypothesized that the learned H can capture biological re-

lationships between drugs. Following a similar procedure to

Cheng et al.,36 we assessed whether our drug similarity mea-

sure, defined as ðH +HT Þ=2 (see STARMethods), reflects known

chemical, biological, and pharmacological relationships be-

tween drugs. To be sure that there is no information leakage,

we trained the GSEM using all available clinical trials and post-

marketing information (encoded in X) but without any side infor-

mation (i.e., mi = aj = 0ci; j) (see STAR Methods). We found

that our drug similarity based onH correlates with chemical, indi-

cation, target, and ATC taxonomy similarities (Figure 7B). Inter-

estingly, our drug similarity was also indicative that the drugs

were pharmacologically similar (ATC taxonomy similarity above

0.05) or distinct (below 0.05). Our results suggest that the matrix

H in our model could capture chemical, biological, and pharma-

cological relationships between drugs.

We also testedwhetherW could capture the anatomical/phys-

iological relationships between side effect phenotypes, as

defined by the MedDRA taxonomy similarity (see STAR

Methods). We defined side effect similarities based on W as

ðW +WT Þ=2 (see STAR Methods). We found that the side effect

similarities based on W correlate with the MedDRA taxonomy

similarity (Figure 7B, bottom). We observed that phenotypically

similar side effects tend to have similar self-representations.

The similarity also indicates whether side effects are anatomi-

cally/physiologically similar (MedDRA taxonomy similarity above

0.05) or distinct (below 0.05).

To showcase how the learnedmatrices allow for interpretability,

we explored the weights inW for two side effects: (1) myocardial

infarction (MI), which has been associated with the withdrawal of

many drugs from the market,4 and (2) blurred vision. Figure 7A

shows a diagram of the side effects that are more similar to MI

and blurred vision based on the weights in W. We observed that

MI is very similar to other vascular-related disorders, including

angina pectoris, which has been shown to appear prior to MI.37

46 drugs in our dataset are known to be associated with both

angina pectoris and MI, which might explain the learned associa-

tion. On the other hand, blurred vision, which is classified in

MedDRA as both an eyes and nervous system disorder, is also

very similar to other related conditions, including psychiatric disor-

ders. The learned matrixW allows for a transparent inspection of

how the model arrived at a given prediction. If a drug is known to

induce MI, our model predicts that the drug might also induce

similar side effects, as shown in Figure 7A.

DISCUSSION

Here, we introduced the GSEM, a computational approach for

predicting the side effects of drugs during clinical drug develop-

ment. Instead of waiting for postmarketing observational evi-

dence to be accumulated, our framework can be used to assist

drug safety professionals in the identification of side effects dur-

ing drug clinical trials. To show this, we trained the models with

side effects identified in clinical trials and tested them to predict

side effects identified in the postmarketing phase. To our knowl-

edge, this is the first attempt to predict the presence or absence

of side effects for drugs with a small number of side effects iden-

tified in clinical trials. Our framework can be used together with

our recent approach to predict the frequencies of drug side ef-

fects in patients.28 These tools can be helpful in the early detec-

tion of rare side effects that cannot be effectively captured in

small-size clinical trials.

Our analysis indicated that predicting side effects that were

identified after the drugs entered the market is difficult when

training only with side effects identified during clinical trials.

Part of this difficulty lies in the differences in the distribution

of side effects reported in clinical trials and in postmarketing.

Scarcely reported side effects during clinical trials tend to be

highly reported in postmarketing, thus explaining the models’

difficulty at predicting them. We further studied this issue by

analyzing the dependency between the number of drugs

associated with a side effect (RRF value) and the prediction

performance of machine learningmodels (see Figure 5). Our ex-

periments showed that the prediction performance of the

models heavily depended on the RRF value of the side effects

we were aiming to predict. Strikingly, improving the RRF value

of each side effect by adding information from postmarketing

reports was more critical for improving the prediction of post-

marketing side effects than the use of any drug or side effect

features.

The problem of distribution shift in side effect reports is deeply

connected to the intrinsic distributional properties of drug side

effects. In a previous study,28 we have shown that drug side ef-

fect reports follow a long-tailed distribution. The distribution can

be summarized in a Pareto 80/30 rule, where 80% of the associ-

ations come from 30% of the side effects.28 Unfortunately, this

means that the amount of labeled information (captured by

RRF), vital for machine learning models, varies per side effect,

following an almost exponential distribution. It would be essen-

tial to consider the dependency between prediction perfor-

mance and side effect RRF when evaluating computational

models that aim to predict drug side effects.
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An innovative aspect of our algorithm is that it learns similarities

between drugs (matrix H) and between side effects (matrix W).

Ourmodel is fundamentally different fromprevious side effect pre-

diction models. A PPN15 is a network-based method that builds

topological features from the bipartite drug-side effect graph.

The graph is obtained when connecting the nodes representing

drugs to the set of nodes representing side effects. PPNs also

integrate chemical, taxonomic, and biological features and then

use a logistic regression model to predict. MF16 is a matrix

decomposition model that learns a low-dimensional feature vec-

tor for each drug and a low-dimensional feature vector for each

side effect such that the dot product between the vectors models

an entry in X. It amounts to a low-rank approximation of X. Simi-

larly, FGRMF18 uses several low-rank approximation models for

each drug side information graph that are integrated into the

model using the smoothness constraint.24–26 The final FGRMF

score is the probability given the logistic regression that combines

the scores of the individual low-rank models. Finally, IMC17 is an

IMC model that integrates drugs and side effect features in the

matrix decomposition model. A detailed description of the math-

ematical formulation of each competitor, togetherwith their imple-

mentation and optimization, can be found in Methods S1.

GSEM builds upon the recent development of high-rank matrix

completion based on self-expressive models (SEM)38 and sparse
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Figure 7. Self-representations capture chemical, biological, and pharmacological relationships

(A) Diagram representing how vision blurred andMI (bottom) are self-represented with other side effects (top). Only side effects with self-representations weights

above 0.05 are shown. The thickness of the connections is proportional to the self-representation weights in W. The colors in the outer circle represent the

disorder category of the side effect according to the Medical Dictionary for Regulatory Activities (MedDRA) terminology.

(B) The interplay between the drug self-representation similarity and four types of drug-drug similarities: chemical, indications, target, and ATC taxonomy. The

bottom figure shows the interplay between the side effect self-representation similarity and the MedDRA taxonomy similarity. Mean values of chemical (mean

similarity of 0.3689), indications (0.0134), drug target (0.0076), ATC taxonomy (0.0576), and MedDRA taxonomy (0.0488) similarities are shown as dashed

horizontal lines.
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linear methods,39 as well as the recent trend of deep learning on

graphs.26,40,41 SEMs represent data points, e.g., drugs, approxi-

mately as a linear combination of a few other data points. Elhami-

far38proposedSEMsasa framework for simultaneously clustering

and completing high-dimensional data lying in the union of low-

dimensional subspaces. It has been shown that SEMs generalize

over standard low-rank matrix completion models,42,43 which

might explain why the GSEM outperforms previous approaches

that have been proposed to predict drug side effects based on

low-rank matrix decomposition.16–18 Self-representations natu-

rally allow the integration of graph-based information about drugs

or side effects. Our model is also related to non-negative MF

(NMF).27,44 They differ, however, in two main aspects. First, while

NMF learns two low-rank matrices to represent the input data,

the GSEM learns a single null-diagonal matrix that allows for a

high-rank matrix.38 Second, while the NMF objective function is

non-convex, we proved that our objective function is convex and

that our algorithm converges to a globally optimal solution.

Our framework could be easily applied to proprietary data-

sets of drug side effects by following our procedure illustrated

in Figure 2. The GSEM is fast to run, and its prediction perfor-

mance is robust to the specific choice of hyperparameters

(see our analysis in Figure S5). Applying our model for a com-

pound undergoing clinical trials is as easy as adding the new

compound information in a new row in X. We started investi-

gating the potential of the GSEM for drug repositioning,45 and

we envision applying our algorithm to other open problems in

biology, chemistry, and medicine, such as drug target predic-

tion46 or antiviral drug effect prediction.47 To assist scientists

working in clinical drug development in their difficult task, we

provide the code to run our algorithm (https://github.com/

paccanarolab/GSEM), the predictions for the 505 drugs used

in our study (supplementary dataset 4 in Galeano and Pacca-

naro48), and the learned matrices that can help to interpret

the predictions (supplementary datasets 5 and 6 in Galeano

and Paccanaro48).

Whenever machine learningmodels support high-stakes deci-

sions, it is desirable to have inherently interpretable models.49

We have shown that the learned matrices in our model capture

biological and pharmacological relationships between drugs

and physiological relationships between side effect phenotypes.

However, the medical, biological, or pharmacological interpreta-

tion of the relationships requires expert biological and medical

knowledge. In the supplemental information, we also discussed

the differences between the interpretability capabilities of the

GSEM and our latent factor model for predicting the frequencies

of drug side effects28 (see Methods S3).

Limitations of the study
We run our method only for drugs with at least five side effects

identified in clinical trials. A limitation of expanding our analysis

is the lack of standardized datasets that classify side effects de-

pending on the phase of the clinical trial in which it was identified.
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SUMMARY

The accurate identification of anticancer peptides (ACPs) and antimicrobial peptides (AMPs) remains a
computational challenge. We propose a tri-fusion neural network termed TriNet for the accurate prediction
of bothACPs andAMPs. The framework first defines three kindsof features to capture the peptide information
contained in serial fingerprints, sequence evolutions, and physicochemical properties, which are then fed into
three parallel modules: a convolutional neural networkmodule enhanced by channel attention, a bidirectional
long short-termmemorymodule, and an encodermodule for training and final classification. To achieve a bet-
ter training effect, TriNet is trained via a training approach using iterative interactions between the samples in
the training and validation datasets. TriNet is tested on multiple challenging ACP and AMP datasets and ex-
hibits significant improvements over various state-of-the-art methods. The web server and source code of
TriNet are respectively available at http://liulab.top/TriNet/server and https://github.com/wanyunzh/TriNet.

INTRODUCTION

The dramatic increase in antimicrobial resistance poses a se-

vere threat to public health globally.1 Due to the misuse or

overuse of antibiotic drugs, some bacterial pathogens

generate resistance to antimicrobials, which has adverse ef-

fects on disease treatments.2,3 Consequently, the discovery

of alternative therapies for combating infections caused by

multidrug-resistant bacteria is urgently needed.4 One prom-

ising strategy is to perform therapy based on antimicrobial

peptides (AMPs), which can help reduce the likelihood of

resistance emergence.5

THE BIGGER PICTURE In drug discovery, the importance of antimicrobial peptides is increasing as multi-
drug-resistant microbes continue to emerge. In addition, there is a growing clinical interest in anticancer
peptides for the treatment of drug-resistant cancer cells. The cost of traditional wet lab experiments to iden-
tify such peptides can be significantly reduced by using computational methods that utilize artificial intel-
ligence. In this study, we developed a deep-learning framework called TriNet for the accurate and rapid
identification of anticancer and antimicrobial peptides. Benchmarking studies demonstrate that TriNet per-
forms with extensive adaptability and effectiveness in identifying anticancer and antimicrobial peptides. In
this work, TriNet is improved through the appropriate constructions of peptide features, the tri-fusion neural
network, and the TVI training method. Further refinement may lead to an effective tool for guiding cancer
treatment and antibiotic drug design.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
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A great number of known AMPs are small molecules with

negligible toxicity and broad spectra of activity against bacteria,

fungi, viruses, and even cancer cells.6,7 Anticancer peptides

(ACPs) are a specific class of AMPs that can control cancer

cell resistance to anticancer drugs.8 Similar to most AMPs,

ACPs with cations can engage electrostatically with the anionic

membranes of cancer cells and kill them without destroying

normal cells.9 In recent years, AMPs, including ACPs, have

been widely used for clinical applications in a variety of disease

therapies.10–13 Accordingly, the effective identification of pep-

tides with biological activity is crucial for developing candidate

drugs. Various experimental and computational methods have

been developed. Traditional wet experiments are often expen-

sive and time consuming; hence, the development of reliable

computational methods is urgently needed. With the develop-

ment of artificial intelligence, an increasing number of computa-

tional methods based on machine learning have been proposed.

For those methods, the extraction of effective peptide sequence

features is the critical first step. In recent decades, researchers

have explored various algorithms for extracting features from

the compositional and distribution information of amino acid

sites, and other approaches take advantage of the physico-

chemical properties that set AMPs or ACPs apart from other

peptide sequences. In addition, binary profile features

(BPFs),14 amino acid composition (AAC), and dipeptide compo-

sition (DPC)15 are also widely employed. Based on AAC, Chou16

proposed the PseAAC model to preserve sequence order infor-

mation. Wei et al.17 proposed an adaptive skip DPC (ASDC)

method for enriching DPC features. The compositional-transi-

tion-distribution (CTD) algorithm proposed by Dubchak et al.18

clusters 20 amino acids into three groups based on specific

physicochemical properties and summarizes 21 descriptors

containing composition, transition, and distribution information,

which can better describe the global compositions of the phys-

icochemical properties of amino acids in peptide sequences.

With the tremendous development of deep learning, in addi-

tion to the use of traditional machine learning algorithms, such

as support vector machines (SVMs), random forests (RFs), and

extreme gradient boosting (XGBoost),19 deep-learning tech-

niques, including convolutional neural networks (CNNs) and

recurrent neural networks (RNNs), are increasingly being em-

ployed by researchers to identify functional peptides. For the

prediction of AMPs, Veltri et al.20 transformed amino acid resi-

dues into 128-dimensional vectors via an embedding layer and

combined a convolution layer and a recurrent layer to capture

potential sequence information. Su et al.21 used multiscale con-

volutional layers with different filter lengths to capture multiscale

motifs in peptide sequences. Fu et al.22 proposed a deep neural

network (DNN) model called ACEP using convolutional layers

and an attention mechanism to fuse the feature tensors gener-

ated by a learnable sequence encoding model. For ACP detec-

tion, the classical model is the long short-term memory (LSTM)

neural network-based deep-learning framework developed by

Yi et al. called ACP-DL.23 Ahmed et al.24 proposed a multi-

headed deep CNN model, ACP-MHCNN, for extracting features

from different sources of information, such as physicochemical

properties and evolutionary information, using parallel CNNs

for ACP prediction. Wang et al.25 proposed a hybrid CNN-

LSTM model termed CL-ACP that applies a CNN to focus on

local information and an LSTM to extract the dependencies of

residues. Lv et al.26 used two kinds of sequence-embedding

technologies, SSA and UniRep, related to DNNs based on

LSTM to complete classification tasks.

The existing methods for predicting ACPs and AMPs mainly

have the following shortcomings. In terms of feature extraction,

the features of peptide sequence residues are usually extracted

in a one-by-one manner in most existing predictors. Thus, the

global information on peptide sequences cannot be captured.

Methods such as ACEP, which uses attention scores to capture

relationships across peptides, should be adopted. In addition, in

existing methods, several physicochemical properties are usu-

ally selected directly from hundreds of properties,14 which may

result in serious redundancy or low quality of the chosen proper-

ties. In terms of the design of neural networks for processing

extracted features, many models fail to design specific neural

networks based on the properties of different features and

even apply the same or similar neural network architectures to

process different kinds of features. Without effective peptide

feature processing, the performance of existing methods still

has plenty of room for improvement. In terms of neural network

training, the training and validation sets are randomly separated

in traditional training approaches. Thus, there is no guarantee

that hard samples (samples that are very likely to bewrongly pre-

dicted) are well trained, since they may be totally split into the

validation set with no or only a few samples in the training set.

In recent years, several partition approaches, including

SPXY,27 Rank-KS,28 and SPXYE,29 have been proposed to split

training and validation sets. The core idea of these methods is to

repeatedly select samples with the maximal distance until a pre-

defined number of samples is obtained. Then, the selected and

remaining samples are regarded as training and validation

sets, respectively. However, in all of these methods, the separa-

tions are performed prior to training, ignoring the possibility that

different neural networks have different hard samples. Therefore,

more appropriate feature extraction methods, neural networks,

and separations of training and validation sets are urgently

needed to improve the identification of ACPs and AMPs.

In this study, we introduce TriNet, a tri-fusion neural network

for ACP and AMP prediction (see Figure 1 for the workflow of

TriNet). (1) TriNet is designed based on the assumption that

whether a peptide is an ACP or AMP should be determined by

multiple pieces of information and their effective fusion. (2) In

addition to the frequently used position-specific scoring matrix

(PSSM) feature, TriNet introduces another two features for repre-

senting the information contained in the serial fingerprint and

physicochemical properties of a peptide sequence. (3) TriNet

employs three parallel networks, a channel attention module

(CAM) based on convolutional layers (for processing serial

fingerprint features), a bidirectional LSTM network (Bi-LSTM;

for processing the sequence evolution features), and an encoder

module (for processing physicochemical property features), at-

tempting to effectively fuse the above three kinds of features.

(4) Different from traditional neural network training methods,

TriNet is trained by a training approach termed TVI to achieve

a better training effect, which is achieved by iterative interactions

between the samples in the training and validation datasets to

generate more appropriate training and validation sets based

on the biases of neural networks.
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We benchmarked TriNet on multiple challenging ACP and

AMP datasets by using both cross-validation and independent

testing, and the results showed that the proposed framework

achieved substantially improved performance over that of other

ACP/AMP prediction tools. In addition, we fully evaluated the

effectiveness of the TVI training method for the prediction of

both ACPs and AMPs, and in multiple other network models,

and found that TVI effectively reconstructed the most appro-

priate training and validation sets based on the biases of a given

neural network. Finally, we tested the effectiveness of the three

proposed features and network structures on all six datasets,

and the results clearly demonstrated the extensive adaptability

and effectiveness of the extracted features and the network

structures. TriNet has been proven to be very sensitive in detect-

ing ACPs and AMPs, demonstrating its great potential for guid-

ing the development of small-peptide drugs targeting cancer

cells or other pathogens, such as bacteria, fungi, and viruses.

RESULTS

TriNet is a framework for predictingACPs/AMPsbasedonpeptide

sequences by effectively fusing the information contained in the

serial fingerprints, sequence evolutions, and physicochemical

properties of peptide sequences and then training the network

with a trainingmethod called TVI. We first tested the effectiveness

of the TVI training method by comparing it with the traditional

training method (random sampling). Then, we evaluated the per-

formance of TriNet on a diverse set of challenging datasets

and compared it with six other ACP prediction algorithms, ACP-

DL,23 MHCNN,24 iACP-DRLF,26 CL-ACP,25 DeepACPpred,30 and

AntiCP 2.0,31 as well as six AMP prediction algorithms, DNN,20

APIN,21 ACEP,22 CAMP-RF, CAMP-SVM, and CAMP-ANN.32

Finally, we analyzed the effectiveness of the extracted features

as well as the structures of TriNet. In this study, the accuracy,

sensitivity, specificity, precision, F1 score, and Matthews

Figure 1. Overall structure of TriNet

(A) Flowchart of the proposed TriNet model.

(B) Architecture of the DCGR-CNN-CAMmechanism. First, a matrixMDCGR containing serial fingerprint information is fed into a convolutional layer, and a feature

map M0
DCGR is generated. Then, a CAM layer is conducted on M0

DCGR to obtain the channel weights, and the weight-assigned feature map M00
DCGR is flattened

and passed through a dense layer.

(C) Architecture of the PSSM-Bi-LSTM module. Given a feature matrix MPSSM, a Bi-LSTM network is applied to process the sequence evolution features.

(D) Architecture of the PCPE-encoder module. The feature matrixMPCPE is first fed into the encoder block of a transformer by using positional encoding, and then

average pooling is applied after the encoder module.
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correlationcoefficient (MCC)metricswereemployedasevaluation

criteria (see the experimental procedures).

Performance evaluation of the TVI training method
In this section, two ACP datasets (ACP740 and ACPmain) and an

AMP dataset (Xiao dataset) were used to evaluate the effective-

ness of the TVI training method, and the process was as follows.

For ACP740, 20% of the ACPs and non-ACPs were randomly

selected as the fixed test set, and the remaining 80%of the sam-

ples were then randomly separated into a training set (containing

473 samples) and a validation set (containing 119 samples). The

random separation of the training and validation sets was per-

formed 10 times, and the 10 different pairs of training and valida-

tion sets producedwere used for network training and validation,

respectively. Then, different trained models were evaluated on

the test set, and the results showed that the network models

demonstrated obvious biases on different separations of the

training and validation sets (see Figures 2, 3, and 4; random sam-

pling). For example, the performance differences between the

two separations were 4.7%, 5.3%, 11.0%, 9.5%, 3.9%, and

0.098 in terms of the accuracy, sensitivity, specificity, precision,

F1 score, and MCC metrics, respectively, on the ACP740 data-

set. On the ACPmain dataset, the differences reached 4.7%,

7.6%, 8.8%, 5.9%, 4.7%, and 0.094, respectively. The differ-

ences were 1.6%, 0.3%, 3.2%, 2.8%, 1.5%, and 0.031, respec-

tively, on the Xiao dataset.

For comparison purposes, the TVI method was also tested on

the 10 training and validation set separations generated by

random sampling, and it performed better than the traditional

training approach, with average improvement rates of 2.0%,

2.1%, 1.9%, 1.9%, 2.0%, and 4.6% in terms of the accuracy,

sensitivity, specificity, precision, F1 score, and MCC metrics,

respectively, on the ACP740 dataset (see Figure 2). On the ACP-

main dataset, the average improvement rates were 2.0%, 2.1%,

1.9%, 1.9%, 2.0%, and 4.7%, respectively (see Figure 3). The

average improvement rates reached 0.47%, 0.24%, 0.72%,

0.63%, 0.45%, and 0.98%, respectively, on the Xiao dataset

Figure 2. Performance comparison between

the traditional training approach and the TVI

method on the ACP740 dataset

Six different evaluation metrics are shown: accu-

racy, sensitivity, specificity, precision, F1 score,

and MCC.

(see Figure 4). Moreover, the largest

improvement rates in terms of the accu-

racy, sensitivity, specificity, precision, F1

score, and MCC metrics were 3.9%,

6.6%, 8.2%, 6.6%, 4.4%, and 9.1% on

the ACP740 dataset; 5.0%, 6.6%, 5.0%,

4.3%, 5.4%, and 16.9% on the ACPmain

dataset; and 1.6%, 0.3%, 3.2%, 2.8%,

1.5%, and 3.3% on the Xiao dataset,

respectively.

Moreover, for the TVI training method,

we calculated the performance differences

between each of the two separations of the

training and validation sets and found that

the differences obviously decreased (see Table S1). The results

demonstrated that the TVImethod effectively reduced the biases

of the tested network models on different separations of the

training and validation sets.

In addition, we evaluated the effectiveness of TVI on other ACP

network models. Two models, ACP-DL and MHCNN, were em-

ployed to perform the test because they provided full codes

that could be utilized to implement our TVI training method. After

the evaluation was completed, the results demonstrated that the

two network models still exhibited obvious biases on different

separations of the training and validation sets, and the TVI

training method still performed better than the traditional training

method, suggesting its strong generalization ability (see Notes

S1 and S2 and Figures S1–S4). The detailed test information of

each model on different datasets can be seen at https://github.

com/wanyunzh/TriNet.

Furthermore, to prevent the influence of the fixed test sets, a

5-fold cross-validation was also performed on the ACP740 data-

set by using the TVI method. As shown in Figure 5, the TVI

method consistently performed better than the traditional

training approach, with improvement rates of 2.5%, 1.2%,

4.7%, 3.8%, 2.5%, and 6.0% in terms of the accuracy, sensi-

tivity, specificity, precision, F1 score, and MCCmetrics, respec-

tively, on the ACP740 dataset, indicating that the TVI training

method was not restricted to the test sets. Based on the above

facts, we believe that the TVI method exhibits great potential

for improving the performance of peptide predictions.

Performance comparison with other existing models
Comparison with ACP predictors

In this section, we compared the performance of TriNet with that

of several other state-of-the-art ACP predictors by conducting

5-fold cross-validations on the ACP740 dataset and indepen-

dent tests on the ACPmain and ACPalternate datasets. On

the ACP740 dataset, we compared TriNet with ACP-DL,

MHCNN, iACP-DRLF, CL-ACP, and DeepACPpred.23–26,30 On

the ACPmain and ACPalternate datasets, we compared it with
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ACP-DL, MHCNN, iACP-DRLF, and AntiCP 2.0.23,24,26,31 In

these ACP prediction approaches, to our knowledge, a valida-

tion set is not established during model training when an inde-

pendent test is performed. Harrington33 indicated that a single

split of the training and test sets can result in an inaccurate eval-

uation of the tested model’s performance. Therefore, we

randomly selected 20% of the peptides from the ACPmain and

ACPalternate training datasets to form the validation sets. For

a fair comparison, all the compared methods were retrained by

using the same training and validation sets on the two datasets

and then tested on the independent test sets.

After comparison, the results showed that TriNet performed

the best among all the compared methods on all three datasets.

In detail, the improvement rates achieved by TriNet over the

other compared methods were 3.2%–8.6%, 1.9%–6.9%,

3.2%–21.5%, 3.0%–12.0%, 3.2%–6.9%, and 6.9%–22.9% on

the ACP740 dataset (see Figure 6) in terms of the accuracy,

sensitivity, specificity, precision, F1 score, and MCC metrics,

respectively). The improvement rates in comparison with other

methods were 3.2%–12.0%, 5.4%–17.2%, 1.9%–9.5%,

3.6%–13.2%, and 9.8%–44.7% on the ACPmain independent

dataset in terms of accuracy, sensitivity, precision, F1 score,

and MCC metrics, respectively (see Figure 7), and 1.7%–

9.0%, 2.9%–9.3%, 2.0%–9.3%, and 3.3%–21.4% on the AC-

Palternate independent dataset in terms of accuracy, sensitivity,

F1 score, and MCCmetrics, respectively (see Figure 8). It should

be noted that, although the specificity of AntiCP-2.0 is slightly

higher than that of TriNet on the ACPmain independent dataset,

its other indicators are lower than those of TriNet. Similarly, on

the ACPalternate independent dataset, the specificity and preci-

sion of iACP-DRLF are slightly higher than those of TriNet, while

its other indicators are lower than those of TriNet. Therefore,

TriNet demonstrated the best overall performance on all three

ACP datasets.

Comparison with AMP predictors

In addition to ACP predictors, we compared TriNet with AMP

prediction tools, including DNN, APIN, ACEP, CAMP-RF,

Figure 3. Performance comparison between

the traditional training approach and the TVI

method on the ACPmain dataset

Six different evaluation metrics are shown: accu-

racy, sensitivity, specificity, precision, F1 score,

and MCC.

CAMP-SVM, and CAMP-ANN,20–22,32 by

testing them on three AMP datasets. After

comparison, the results showed that

TriNet performed better than all the

compared methods on the three datasets.

In detail, the improvement rates achieved

by TriNet over the other compared

methods were 2.8%–9.6%, 0.78%–5.7%,

3.8%–16.9%, 3.5%–13.3%, 2.7%–9.0%,

and 6.0%–21.7% on the Xiao independent

dataset (see Figure 9) in terms of the accu-

racy, sensitivity, specificity, precision, F1

score, and MCC metrics, respectively,

and 1.0%–20.8%, 3.9%–10.5%, 0.13%–

26.9%, 0.23%–26.9%, 1.1%–18.7%, and 2.2%–57.2% on the

AMPlify dataset (see Figure 10), respectively. On the DAMP

dataset (see Figure 11), the improvement rates in terms of

accuracy, specificity, precision, F1 score, and MCC were

1.4%–10.7%, 1.7%–18.4%, 1.8%–15.8%, 1.3%–10.8%, and

3.1%–26.5%. Although the sensitivity of TriNet is lower than

that of CAMP-RF, its other indicators are much higher, demon-

strating that the best overall performance is achieved using

TriNet (see Figure 11).

Evaluation of the effectiveness of the extracted features
and the network structures
In this paper, we carried out multiple tests on the three datasets,

ACP740, ACPmain, and Xiao to verify the effectiveness of our

feature extraction methods as well as the superiority of the

network structures.

Effectiveness of the extracted features

In this section, we first demonstrated the advantages of the

improved DCGR method over the original DCGR approach in

terms of extracting the sequence serial fingerprint features.

Then, we verified the importance of combining all three features.

Finally, we demonstrated the extensive adaptability and effec-

tiveness of the three features.

To demonstrate the advantages of the improved DCGR

method, we compared its performance with that of the original

DCGR approach on all three datasets, and the results showed

that the improved method performed better than the original

techniques in terms of all the metrics on the three datasets

(see Table S2). Then, we attempted to verify the importance of

combining all three features by removing each feature individu-

ally, and the results showed that the loss of any of the three fea-

tures resulted in performance degradation on all three datasets

(see Table S3). In addition, in comparison with the physicochem-

ical property feature, the removal of the serial fingerprint or

sequence evolution feature caused a more serious performance

decline. Finally, to demonstrate the extensive adaptability and

effectiveness of the three features, we replaced the neural
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network with the XGBoost34 algorithm, which is a popular tradi-

tional machine learning technique, for retraining the samples on

all three datasets. In detail, the three feature matrices obtained

from DCGR, PSSM, and physicochemical property embedding

(PCPE) were first flattened and then concatenated to generate

a feature vector for XGBoost. The testing results (see

Tables S4–S6) showed that XGBoost achieved higher perfor-

mance than many of the compared models on all three datasets,

demonstrating the extensive adaptability and effectiveness of

the features extracted in this study.

Effectiveness of the network structures

Regarding the CNN-CAM mechanism for processing the serial

fingerprint feature, we replaced the 1 3 8 kernel with three

frequently used square kernels with sizes of 2, 3, and 5, and the

results showed that our property-based 1 3 8 kernel performed

the best (see Table S7), mainly because such a kernel size

made the network learn the shared weights based on each phys-

icochemical property. The CAM contains two pooling strategies:

average pooling and maximum pooling. We first replaced this

module with the squeeze-and-excitation network (SENet),35

which uses only global average pooling, and the prediction perfor-

mance obviously decreased on all three datasets (see Table S8).

As shown in previous studies,36 maximum pooling compensates

for the global information gained from average pooling by reflect-

ing the salient part of each channel. Then, we replaced the CAM

with another popular convolutional block attention module

(CBAM)36 that has a spatial attention module (SAM) after its

CAM, and we found that the prediction performance still declined

on most datasets (see Table S8). Since the SAM mainly focuses

on the importance of the spatial features, the serial fingerprint

feature extracted byDCGRhad no spatial or positional properties.

For the encoder module, we tested different numbers of

heads in the self-attention module. In detail, we set 1, 2, and

4 heads and compared the resulting performances. The results

showed that the single-head self-attention mechanism per-

formed better than the multihead self-attention mechanism

Figure 4. Performance comparison between

the traditional training approach and the TVI

method on the Xiao dataset

Six different evaluation metrics are shown: accu-

racy, sensitivity, specificity, precision, F1 score,

and MCC.

(see Table S9). The reason for this may

be that a single head is able to make the

network cover the most effective informa-

tion concerning the distribution of the

physicochemical properties. As a conse-

quence, the use of multiple heads makes

the model fail to capture the differences

among the heads, and finally, the multi-

head models become more complex and

ineffective.

DISCUSSION

In this study, we introduced TriNet, a tri-

fusion neural network for ACP or AMP pre-

diction. After evaluating the performance of TriNet and

comparing it with other leading prediction methods on multiple

challenging datasets, we found that TriNet demonstrated much

higher accuracy in terms of predicting both ACPs and AMPs

than all the compared methods under commonly used criteria.

The superiority of TriNet may be attributed to the following

method innovations.

First, we proposed that a prediction method for ACPs and

AMPs should effectively fuse multiple pieces of information,

based on which the TriNet framework was designed. Second,

in addition to the frequently used sequence evolution feature,

we introduced another two features, the serial fingerprint and

physicochemical property features, which appropriately charac-

terize the global sequence information and the distributions of

the physicochemical properties of peptides. The test results

demonstrated the extensive adaptability and effectiveness

of the proposed features. Third, based on the properties of the

three features, we specifically designed three network struc-

tures, which appropriately processed each of the features and

then effectively fused them for the final predictions. Fourth, we

developed a neural network training approach called TVI, which

was able to generate more appropriately separated training and

validation sets based on the biases of a network model. In addi-

tion, we provided the learning curves of all six datasets (see

Figures S6–S11) to demonstrate the degree of overfitting, and

it was shown that there is no obvious overfitting phenomenon

on any of these datasets.

In supervised deep-learning fields, setting both the validation

and the test sets is of great importance for evaluating the gener-

alization ability of a network model according to the predictive

power of blind test sets. However, as we know, in the field of

ACP prediction, many models have only training and test sets,

which clearly leads to information leakage from the test set

and an inaccurate evaluation of the model’s performance. In

contrast, we set the validation sets for both 5-fold cross-valida-

tion and independent testing.
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Despite the obvious advantages of TriNet, we still have a

long way to go to completely solve the ACP/AMP prediction

problem, and further improvements can still be made on

TriNet in the future. For example, the current model is not an

end-to-end model. Thus, it still takes some time to calculate

the corresponding features. Therefore, the inference time of

TriNet may be longer than that of end-to-end frameworks. In

addition, we note that the current version of TVI may perform

slightly worse than traditional training methods in some cases,

and more attention should be given to the following issues. (1)

How can the starting epoch for interaction among the samples

in the training and validation sets be determined? (2) How can

the number of interacting samples between the two sets be

determined? (3) How can the interaction termination epoch

be determined? Moreover, the issue of determining whether in-

teractions are required for the given separation of the training

and validation sets still needs to be further investigated. The

future version of TriNet will attempt to solve these problems

and make further improvements.

The results of the evaluations showed that our method

could clearly distinguish between ACPs/AMPs and non-ACPs/

AMPs, and the potential of TriNet for identifying ACPs/AMPs

will help researchers develop small-peptide drugs targeting

cancer cells or other pathogens, such as bacteria, fungi, and

viruses. In addition, the TVI training method may become

the next trend for training different neural networks in

other areas.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for questions about this paper is Juntao Liu, who can be

reached at juntaosdu@126.com.

Materials availability

No unique materials were generated from this study.

Data and code availability

The data that support the findings of this study are available from the lead con-

tact upon reasonable request. The authors declare that all other data support-

ing the findings of this study are available within the paper and its supplemental

information files. TriNet is deployed on our web server: http://liulab.top/TriNet/

server. All original code has been deposited at Zenodo under https://doi.org/

10.5281/zenodo.7556870 and is publicly available as of the date of

publication.

Methodology

Dataset preparation

In this study, six datasets were collected to test the prediction performance of

TriNet, including three ACP datasets (ACP740 dataset, ACPmain dataset, and

ACPalternate dataset) for ACP prediction and three AMP datasets (Xiao data-

set, DAMP dataset, and AMPlify dataset) for AMP prediction. ACP740 was

introduced by Yi et al.23; it contains 376 experimentally validated ACPs and

364 AMPs without anticancer activity, and the sequence similarity between

each pair of peptides is no greater than 90%. ACPmain and ACPalternate

were introduced from Agrawal et al.,31 and each dataset contains two subsets.

The first subset of ACPmain, which includes 689 experimentally validated

ACPs and 689 non-ACPs, was separated into two parts for training and valida-

tionwith a 4:1 ratio. The second subset of ACPmain, which includes 172 exper-

imentally validated ACPs and 172 non-ACPs, was used as the independent

test set. The first subset of ACPalternate, which includes 776 experimentally

validated ACPs and 776 non-ACPs, was also separated into two parts for

training and validation with a 4:1 ratio. The second subset of ACPmain, which

includes 194 experimentally validated ACPs and 194 non-ACPs, was used as

the independent test set.

For the AMP datasets, Xiao’s benchmark training dataset37 comprises

1,388 AMPs and 1,440 non-AMPs, and the corresponding independent

test set comprises 920 AMPs and 920 non-AMPs. However, the dataset

from Xiao37 has a major difference in length distribution between AMP and

non-AMP sequences. We followed the same method as Veltri et al.20 and

randomly adjusted the lengths of non-AMP sequences to more closely

resemble AMP sequences to avoid learning the length differences. The

AMP and non-AMP sequence length distributions of the original dataset

and our readjusted dataset are provided in Figures S12 and S13. Then,

Xiao’s training dataset was divided into two parts for training and validation

with a 4:1 ratio. DAMP was introduced by Veltri et al.,20 and the 3,556 pep-

tide sequences (1,778 AMPs and 1778 non-AMPs) with a similarity of no

more than 40% were divided into three parts: 1,424 for training, 708 for vali-

dation, and 1,424 for testing. AMPlify was introduced by Li et al.,38 and the

non-AMP sequences in the dataset were also adjusted to match the length

distributions of the AMP sequences. The training dataset comprising 3,338

AMPs and 3,338 non-AMPs was also divided into two parts for training

and validation with a 4:1 ratio, and the independent test set comprises 835

AMPs and 835 non-AMPs.

Overview of the TriNet framework

The TriNet pipeline was designed to predict ACPs and AMPs based solely on

the given peptide sequences. In this study, we assumed that whether a pep-

tide was an ACP or AMP could be predicted by effectively combining three

kinds of features representing the serial fingerprints, sequence evolutions,

and physicochemical properties of peptide sequences. Therefore, the main

architecture of the TriNet pipeline comprises three parallel components, a

CNN-CAM, a Bi-LSTM network, and an encoder module, for processing and

fusing the above three features (Figure 1). By using batch normalization,

400-, 256-, and 50-dimensional feature vectors were obtained as the outputs

of each branch. These feature vectors were then concatenated and passed

through dropout and dense layers to generate the final prediction results.

The final dense layer employs a sigmoid function generating a score in [0,1]

to determine that the peptide is an ACP/AMP if the score is no smaller than

0.5 and a non-ACP/AMP otherwise.

Moreover, to obtain better training results than those of the traditional

training method, which randomly separated the training and validation data-

sets, a training approach termed TVI was designed to reseparate the training

and validation sets based on the structure of the neural network, which was

Figure 5. Comparison between the traditional training approach and

the TVI method conducted via 5-fold cross-validation on the ACP740

dataset

The comparison was performed under six different evaluation metrics: accu-

racy, sensitivity, specificity, precision, F1 score, and MCC.
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achieved through iterative interaction of the samples in the training and valida-

tion datasets. In the following sections, we introduce each part of the TriNet

method in detail.

Extraction of peptide sequence features

Given a peptide sequence, three kinds of features reflecting the information of

the serial fingerprints, sequence evolutions, and physicochemical properties

of peptide sequences were extracted as follows.

Extracting the serial fingerprint features of sequences. DCGR39 is a pro-

tein sequence feature extraction method based on chaotic game represen-

tation (CGR)39,40 that attempts to capture the global characteristics of a

protein sequence; therefore, the extracted features can effectively reflect

the serial fingerprint information of the given peptide sequences (see

Note S3 for the method details). The original DCGR method obtained dis-

tance matrices only in four quadrants, and the information between the

points that crossed quadrants was therefore lost. To recover this lost infor-

mation, we improved the DCGR method by rotating the coordinate axis by

45� to obtain another four distance matrices (see Figure S5). Then, for each

CGR curve, eight distance matrices, Ai1, Ai2, ., Ai8, could be calculated,

and the final 158 3 8 feature matrix MDCGR for each peptide could be

expressed as:

di = ½rðAi1Þ; rðAi2Þ;.; rðAi8Þ�T ; (Equation 1)

MDCGR = ½d1;d2;.;di ;.;d158�T ; (Equation 2)

where r(Aij) denotes the leading eigenvalues of the distance matrix Aij and 158

represents the 158 physicochemical properties selected from the AAindex.

Extracting sequence evolution features. The PSSM is frequently applied to

detect distant homologs using iterations.41,42 An element (i, j) in the PSSM is

proportional to the probability of the residue at position i being replaced by

amino acid j, reflecting the evolutionary information of peptide sequences.

The PSI-BLAST43 tool was employed to obtain an L3 20 feature matrixMPSSM

for each peptide.

Extracting sequence physicochemical property features. PCPE is capable

of reflecting the distributions of physicochemical properties in peptide se-

quences. Regarding the choice of physicochemical properties, traditional

methods usually select specific physicochemical properties directly and there-

fore may result in the chosen physicochemical properties exhibiting redun-

dancy or low quality. In contrast, we first employed the method proposed by

Saha et al.44 to group the 556 physicochemical properties into eight clusters

and extracted the most representative property in each cluster to obtain

more comprehensive physicochemical properties while avoiding redun-

dancies. Then, by using PCPE, each amino acid was encoded into an eight-

Figure 6. Comparison of TriNet with existing

models on the ACP740 dataset using 5-fold

cross-validation

Six different evaluation metrics are shown: accu-

racy, sensitivity, specificity, precision, F1 score,

and MCC.

dimensional vector, and an L 3 8 feature matrix

MPCPE was finally constructed for each peptide.

Tomake the feature matricesMPSSM andMPCPE of

all the peptides with different lengths have the same

dimensions, we set the sequence length L to 50 and

used zero-padding for peptides whose lengths were

less than 50.

Processing of the serial fingerprint features

via the CNN-CAM module

The feature matrix MDCGR obtained from DCGR

was reshaped into a three-dimensional tensor and

fed into an improved CNN (see Figure 1B), which

is capable of capturing important features through

local connectivity and weight sharing. Traditional

CNNs usually apply square kernels to learn to

convolve feature matrices. However, each row of

the feature matrix MDCGR denotes one of the 158 physicochemical proper-

ties, and the columns represent the eight features extracted from one CGR

curve. Therefore, more appropriate kernels of size 1 3 8 (instead of the

frequently used square kernels) were applied by TriNet to learn the shared

weights for each of the 158 properties. The number of filters was set to 16

in this study.

The CNN effectively captured the local information from each physicochem-

ical property, based on which the CAM36 was then employed to obtain the

global information by emphasizing important features from all 158 properties.

The CAM model is able to emphasize more valuable features by assigning

larger weights. In detail, after calculating the three-dimensional feature map

M0
DCGR = fconv (MDCGR) from the convolutional layer, each channelCi ofM

0
DCGR

was assigned a channel weight CAMi according to the classification impor-

tance of this channel. First, global average and maximum pooling were per-

formed on the feature mapM0
DCGR, followed by a sharedmultilayer perceptron

(MLP) comprising two dense layers. The whole process of the CAM can be

formulated as follows:

CAMðM0
DCGRÞ = sfMLP½AvgPoolðM0

DCGRÞ� + MLP½MaxPoolðM0
DCGRÞ�g

= s
�

W1

�

W0

�

M0
avg

��

+ W1½W0ðM0
maxÞ�

�

;

(Equation 3)

where s denotes the sigmoid function, M0
DCGR˛R15831316 and M0

avg, M
0
max˛

R131316 are two matrices that calculate the average and maximum pooling,

respectively, andW0˛R2316 (with the rectified linear unit [ReLU] activation func-

tion) andW1˛R1632 represent the weight matrices of the shared MLP.

The channel weights were then assigned to the corresponding channels of

the feature map M0
DCGR for element-wise multiplication, and the weight-as-

signed feature map M00
DCGR˛R15831316 was generated. Then, M00

DCGR was

flattened and passed through a dense layer and transformed into the final

DCGR feature vector FDCGR with 400 dimensions.

Processing of the sequence evolution features via the Bi-LSTM layer

As shown in Figure 1C, the feature matrixMPSSM obtained from the PSSMwas

fed into the Bi-LSTM layer. Different from the traditional RNN, the LSTM

network45 is able to learn and capture both the long- and the short-term de-

pendencies among the amino acids of a peptide sequence. Moreover, studies

have shown that certain types of residues are usually favored at the N terminus

and C terminus of ACPs and AMPs, which play crucial roles in identifying

ACPs and AMPs.15,46 Therefore, by analyzing the peptide sequences in the

forward and backward directions, Bi-LSTM is capable of obtaining information

from the C terminus and N terminus for peptides with lengths of no more than

50 amino acids at the same timestep. The calculations of the forward LSTM

can be summarized as follows:
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OPEN ACCESS Article

8 Patterns 4, 100702, March 10, 2023



ft = sðWhf ht� 1 + Wxf xt + bf Þ; (Equation 4)

it = sðWhi ht� 1 + Wxi xt + biÞ; (Equation 5)

~ct = tanh ðWhc ht� 1 + Wxc xt + bcÞ; (Equation 6)

Ot = s ðWho ht� 1 + Wxo xt + boÞ; (Equation 7)

ct = ft5ct� 1 + it5~ct ; (Equation 8)

ht = Ot5tanh ðct� 1Þ; (Equation 9)

where t = 1, 2, ., 50 represents the order of 50 amino acids of a peptide

sequence; Whf, Whi, Whc, Who, Wxf, Wxi, Wxc, and Wxo are weight matrices; bf,

bi, bc, and bo are bias vectors; ft is the forget gate; it is the input gate; ot is the

Figure 7. Comparison of TriNet with existing

models on the ACPmain independent dataset

Six different evaluation metrics are shown: accu-

racy, sensitivity, specificity, precision, F1 score,

and MCC.

output gate; xt is the current input; ct-1 is the previous

cell state; ct is the current cell state; ~ct is the value

added to the cell state; ht-1 and ht are the previous

and current hidden states, respectively; and 5 rep-

resents the elementwise multiplication operations.

The backward LSTM works in the same way as

the forward LSTMwith the calculated current hidden

state being h0 t. The final PSSM feature vector is then

formulated as FPSSM = [ht, h
0
t] of 256 dimensions,

with t being the last time step.

Processing the physicochemical property

features via the encoder module

The feature matrix MPCPE obtained from PCPE

was fed into the encoder block, with each row repre-

senting an eight-dimensional embedding vector

(see Figure 1D). The encoder block was designed

based on the encoder of a transformer,47 which contains multihead self-atten-

tion mechanisms, a feedforward network, and skip connections followed by

layer normalization. The main part of the transformer is multihead self-atten-

tion, which is able to calculate the dependencies between amino acid residues

despite the long distances between them, hence efficiently capturing the de-

pendency information of the physicochemical properties of specific peptides.

In this paper, single-head self-attention was employed, and its calculation pro-

cess is summarized as follows:

qi = Wq pi ; ki = Wk pi ; ni = Wy pi ; i = 1; 2;.; L; (Equation 10)

Q = ½q1;q2;.;qL�T ;K = ½k1; k2;.; kL�T ;V = ½n1; n2;.; nL�T ; (Equation 11)

Attention ðQ;K;VÞ = Softmax ðAÞ V = Softmax
�

Q KT
�

Sqrt ðdkÞ
�

V ;

(Equation 12)

Figure 8. Comparison of TriNet with existing

models on the ACPalternate independent da-

taset

Six different evaluation metrics are shown: accu-

racy, sensitivity, specificity, precision, F1 score,

and MCC.
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whereA is the attention scorematrix; qi, ki, and vi are query, key, and value vec-

tors, respectively; dk is their dimensionality; and Wq, Wk, and Wv˛ Rdk3dp are

the corresponding weight matrices.

Furthermore, since the order of the residues plays a crucial role in a peptide

sequence, positional encoding, using the sine and cosine to reflect the distri-

bution of the physicochemical properties in a peptide sequence, was applied

in this study as follows:

PE ðpos; 2iÞ = sin
	

pos=100002i=dp



; (Equation 13)

PE ðpos;2i + 1Þ = cos
	

pos=100002i=dp



; (Equation 14)

where pos represents the positions of the amino acids in the sequence, 2i and

2i + 1 denote the even and odd element sites in the embedding vectors,

respectively, and dp = 8 is the dimensionality of the embedding vectors.

Figure 9. Comparison of TriNet with existing

models on Xiao’s independent dataset

Six different evaluation metrics are shown: accu-

racy, sensitivity, specificity, precision, F1 score,

and MCC.

Then, a feature matrixM0
PCPE = [p1, p2 ., pL]

T ob-

tained by adding the positional encoding information

was constructed, with pi denoting the feature vector

of the i-th residue and L = 50 representing the

sequence length. Passing through the encoder

module, average pooling was applied, and the final

50-dimensional PCPE feature vector FPCPE was

calculated for each peptide.

Network training by iterative interaction

between the training and validation sets

After constructing a neural network, traditional

training methods usually randomly separate the

training and validation sets and then train the model

on the training set and validate it on the validation

set. In fact, neural networks may show great biases

on different separations, and therefore, different

separations of the training and validation sets may

largely influence the training of the network model and hence the performance

achieved on the testing set. To construct more appropriate training and valida-

tion sets by considering the biases of a specific neural network, a method

termed TVI was proposed by iteratively interacting the samples in the training

and validation sets as follows.

Step 1. Randomly separate a training set T = {(x1, y1), (x2, y2),., (xn, yn)} and

a validation set V = {(x01, y01), (x02, y02), ., (x0m, y0m)}, where xi and x0 i are the

feature vectors of the samples in the training and validation sets, respectively,

and yi and y0 i˛{0, 1} are the sample labels. Train and validate the constructed

network model on the two sets for N epochs.

Step 2. Search for the samples in V that are erroneously classifiedmore than

five times in the last 10 epochs, termed V 0 = fðx0m1
; y0m1

Þ; ðx0m2
; y0m2

Þ;.; ðx0mk
;

y0mk
Þg, and search for the samples in T that are correctly classified in each of

the last 10 epochs, termed T 0 = fðxn1 ;yn1 Þ; ðxn2 ;yn2 Þ;.;ðxnl ;ynl Þg.
Step 3. Randomly select [k/2] samples from V0, termed Vchange, and [k/2] sam-

ples fromT0, termedTchange (if [k/2] is larger than l, then randomly select l samples

Figure 10. Comparison of TriNet with existing

models on the AMPlify dataset

Six different evaluation metrics are shown: accu-

racy, sensitivity, specificity, precision, F1 score,

and MCC.
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from V0 and T0). Then, construct a training set Tnew and a validation set Vnew by

exchanging the samples of T and V that are contained in Tchange and Vchange.

Step 4. Retrain the networkmodel on the two sets Tnew and Vnew, repeat step

3 and step 4M (M was set to 2 in this study) times, and obtain the final training

and validation sets Tfinal and Vfinal. Then, reinitialize the neural network and

perform training and validation on Tfinal and Vfinal.

Evaluation metrics and methods

In this study, the widely used accuracy (Acc), sensitivity (Sens), specificity

(Spec), precision (Prec), F1 score, and MCC criteria were applied to evaluate

the performance of the models (see Note 4 for the definitions of these criteria).

To evaluate the effectiveness of the models, 5-fold cross-validation and inde-

pendent testing were employed onmultiple datasets. For the 5-fold cross-vali-

dation, we randomly divided all the samples into five sets of equal size, among

which four were used for training and validation (the training-validation ratio

was 4:1), and the remaining set was used for testing. This process was

repeated five times in such a way that each of the five sets was used once

for testing, and the final performance was obtained by averaging the perfor-

mance achieved across all five sets.
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SUMMARY

Drug safety initiatives have endorsed human iPSC-derived cardiomyocytes (hiPSC-CMs) as an in vitromodel
for predicting drug-induced cardiac arrhythmia. However, the extent to which human-defined features of
in vitro arrhythmia predict actual clinical risk has beenmuch debated. Here, we trained a convolutional neural
network classifier (CNN) to learn features of in vitro action potential recordings of hiPSC-CMs that are asso-
ciated with lethal Torsade de Pointes arrhythmia. The CNN classifier accurately predicted the risk of drug-
induced arrhythmia in people. The risk profile of the test drugs was similar across hiPSC-CMs derived
from different healthy donors. In contrast, pathogenic mutations that cause arrhythmogenic cardiomyopa-
thies in patients significantly increased the proarrhythmic propensity to certain intermediate and high-risk
drugs in the hiPSC-CMs. Thus, deep learning can identify in vitro arrhythmic features that correlate with clin-
ical arrhythmia and discern the influence of patient genetics on the risk of drug-induced arrhythmia.

INTRODUCTION

Drug-induced arrhythmias are a common cause of drug attrition

during development and for restricted use or withdrawal from the

market.1–3 As people vary in their predisposition to drug-induced

arrhythmia,4–6 there is a widely accepted need to assess risk in

susceptible populations.7,8 For ethical reasons and practical lim-

itations, susceptible individuals, including carriers of rare predis-

posing gene variants, are not generally included in clinical trials.9

Human iPSC-derived cardiomyocytes (hiPSC-CMs) retain an in-

dividual’s genetic makeup and enable scalable production of

cardiac cells for in vitro testing and, therefore, are a break-

through technology for risk assessment.10,11 This notion is

supported by the findings that several mutations that cause elec-

trophysiological or myopathic heart disease predispose CMs to

drug-induced arrhythmia.12

Cell-based assays assess arrhythmia risk by quantifying

waveform features in the cells’ action potential. Typically, these

features are quantified using human-defined metrics such as the

action potential duration at 90% amplitude (APD90) or incidence

of after depolarizations.6,13,14 However, these human-defined

features do not accurately predict clinical arrhythmia.15–17 Alto-

gether, the complex manifestations of arrhythmia, the uncertain

correspondence between in vitro action potential waveform

features and actual clinical arrhythmia, and the influence of dis-

ease susceptibility loci present significant challenges for risk

prediction.

To address this problem, we developed a deep learning

approach to discriminate the in vitro electrophysiological fea-

tures induced in hiPSC-CMs by reference drugs with well-estab-

lished (high to low) risk of eliciting the life-threatening ventricular

tachyarrhythmia (Torsades de Pointes, TdP). Deep learning is a

type of artificial intelligence (AI) that uses multiple computational

layers in a deep neural network (DNN). DNNs extract features

relevant to discriminating input classes in a systematic and unbi-

ased manner, effectively removing the need for human-defined

metrics.18 Among the different types of DNNs, convolutional

neural networks (CNNs), which learn complex features from

input data by assigning weights to the result of convolutional op-

erations, are showing tremendous success in various biomedical

applications such as medical image analysis19 and physiological

signal analysis.20 Recently, CNNs have been used to automate

the detection and classification of arrhythmias both in vitro21

and in vivo.22

We trained a CNN to discriminate high versus low-risk drugs

based on intrinsic drug-induced electrophysiological waveforms

in hiPSC-CMs rather than human expectations. The CNN more

accurately classified actual drug risk in patients than did hu-

man-defined metrics. Moreover, the trained CNN successfully

quantified the increase risk of drug-induced arrhythmia caused
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by cardiomyopathic gene variants, which pose a clinically signif-

icant risk factor that has been challenging to quantify.23 In sum-

mary, deep learning out-performed human-defined methods for

drug risk assessment and detected an influence of patient ge-

netics on susceptibility to drug-induced arrhythmia.

RESULTS

High-throughput screening of electrophysiological
effects of drugs in healthy and disease hiPSC-CMs
models
This study aimed to develop a new paradigm to accurately pre-

dict the risk of drugs and genetics on TdP arrhythmia without

imposing human bias (Figure 1). Genotype-phenotype relation-

ships were modeled in a cohort of hiPSC-CMs generated from

8 hiPSC lines. Three (3) lines were derived from healthy donors

(HD.113, HD.273, and HD.15S1), while five (5) lines harbored

pathogenic mutations that cause hypertrophic cardiomyopathy

[HCM] (HCM.MYBPC3 p.R943X),24 left ventricular noncompac-

tion (LVNC), and HCM (HCM.TPM1 p.K37E)25 and dilated car-

diomyopathy [DCM] (DCM.PLN p.R14del,26 DCM.RBM20

p.R634Q,27 and DCM.TNNT2 p.R183W28). These mutations

were introduced in the same genetic background (HD.15S1

iPSCs) by CRISPR-mediated genome editing, minimizing the

potentially confounding effects of the genetic background. All

these mutations, except for the TNNT2 p.R183W mutation, are

associated with elevated arrhythmic risk in patients, including

ventricular arrhythmias and sudden cardiac death.29–34

Experiments were carried out using a panel of drugs with

well-characterized proarrhythmia risk profiles, including the 28

drugs proposed by comprehensive in vitro proarrhythmia assay

(CiPA) initiative35 and 9 additional drugs to facilitate generaliza-

tion across studies. For training and evaluation purposes, we

used the CiPA collection categorized as high, intermediate,

Sensitivity to
drug-induced
arrhythmia

Low risk genetics Introduce DCM and HCM-causing gene 
variants suspected to increase arrhythmic risk

hiPSCs

hiPSC-CMs

Treat hiPSC-CMs with 
drugs of established

high, intermediate and 
low/no arrhythmic risk 

in patients 

CRISPR/Cas9
gene editing

Train a convolutional 
neural network (CNN) to 

recognize in vitro arrhythmic 
features that are uniquely 
associated with drug risk 

in peopleOptical action 
potential recording

Quantify the risk of drug-induced arrhythmia in cardiomyocytes from healthy donors

Determine if DCM and HCM gene variants contribute to drug-induced arrhythmic risk

Figure 1. Strategy to determine the influence of myopathic gene variants on the proarrhythmic effect of drugs

hiPSC-CMs were generated from three donor patients without risk-associated genetics. DCM and HCM causing mutations were introduced to one of the healthy

backgrounds and multiple batches of hiPSC-CMs were generated. The hiPSC-CMs were treated with 37 drugs of characterized high, intermediate, and low/no

arrhythmic risk. Each drug was tested at 8 different concentrations and a voltage-sensitive dye was used to obtain membrane potential recordings. A CNN was

trained to classify voltage traces based on the drug’s risk of inducing arrhythmia in patients. Class probabilities from the CNNwere used to rank the proarrhythmic

effects of drugs and evaluate the influence of myopathic gene variants.
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and low/no risk for developing TdP arrhythmia at clinical expo-

sures based on published reports, the Food and Drug Adminis-

tration (FDA) adverse effect database, and expert opinion.36

The uniformity and quality of the CM batches were assessed

based on the baseline morphology of the action potential traces

from 28 differentiation batches from 8 hiPSC lines displayed

typical electrophysiological characteristics at baseline (see

STAR Methods). Differentiation batches that presented with

abnormal baseline characteristics, such as baseline arrhythmias

and cessation in certain wells, were excluded from further anal-

ysis (Figure S2).

Deep learning features from voltage traces
A CNN was designed to classify voltage traces as non-

arrhythmic, arrhythmic, or asystolic (Figure 2A; see Figure S1A

and STAR Methods for details). For training and testing the

CNN, sets of annotated traces are required. First, traces with

no spontaneous action potential activity were manually labeled

as asystolic (Figure 2B). To remove human bias regarding the

classification of non-arrhythmic versus arrhythmic traces, we

employed the following criteria: (1) traces from wells treated

with drugs carrying high risk of inducing TdP arrhythmia (classi-

fied according to CiPA)35 and treated at a concentration greater

or equal than maximum free plasma concentration (free Cmax)

were annotated as arrhythmic. (2) Traces from wells treated

with drugs with a no or low-risk CiPA classification and the con-

centration was less or equal to free Cmax were annotated as non-

arrhythmic. Traces that did not follow any of these criteria—i.e.,

wells treated with drugs of intermediate CiPA risk, wells treated

with low doses of high-risk compounds, or high doses of low-

risk compounds—were not included in either training or test

datasets.

The training dataset comprised traces from healthy donor lines

treated with the training compound library proposed by CiPA

(Figures 2C and S1B). The training dataset was used to refine

the convolutional layers’ number and size of filters and dropout

percentage until an accuracy of 88.6%was achieved. The confu-

sion matrix of the training set (Figure 2E) revealed that most er-

rors involved traces classified as ‘‘non-arrhythmic’’ by the CNN

but were derived from drugs annotated as ‘‘arrhythmic.’’ Further

analysis showed that 127 of these 142 misclassified traces were

the result of treatment with bepridil, for which previous studies

had shown consistently classified as producing non-arrhythmic

responses in hiPSC-derived CMs despite being tested at con-

centrations exceeding a hundred times the free Cmax.
13,14,37

The accuracy of the trace classifier was verified against

different sets of unseen data (Figures 2C and 2E). The test set

1 contained data from compounds that differed from the training
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Figure 2. A deep learning neural network for classification of voltage traces

(A) Schematic of CNN classifier for voltage traces into the classes: non-arrhythmic, asystolic, and arrhythmic.

(B) Steps for trace annotation.

(C) Splitting data for training and test datasets.

(D) Examples of each trace category and values of class probabilities outputted by the CNN.

(E) Confusion matrixes for the training and test datasets.
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library but in the same cell lines used for training (yielding an ac-

curacy of 98.5%). The test set 2 contained data from different

cell lines than those used for training but the same compounds

(yielding an accuracy of 86.2%). Lastly, test set 3 contained

data from both cell lines and compounds that were not used

for training (yielding an accuracy of 97.5%). Note that test set 2

contained unseen data from bepridil, which explains the lower

accuracy relative to test sets 1 and 3.

Representative traces and the CNN class probabilities output

are shown in Figure 2D. Briefly, the CNN interpreted whole

voltage waveforms from non-arrhythmic, cessation, and

arrhythmic classes and generated their respective probabilities

(Figure 2D). These probabilities can be used as a unified set of

metrics applicable for all action potential waveforms, over-

coming the problems that human-defined metrics suffer when

quantifying specific phenotypes (e.g., in asystole APD90 loses

its meaning as no action potential exists; or the detection of early

after depolarizations [EADs] or delayed after depolarizations

[DADs], which often requires human inspection of the trace).

Most importantly, the training trace annotations were based on

the risk of clinical arrhythmia. This approach allowed the CNN

to learn features of the in vitro traces that corresponded to the

effect of clinically risky drugs, circumventing the concern that

human intuition might not recognize the in vitro features that

are predictive of clinical arrhythmia.

Use of the CNN to determine the probability of drug-
induced arrhythmia
The trained CNN reflected the dose-dependent proarrhythmic

effects in the voltage waveforms of CMs treated with high-

risk drugs as increases in the probability of arrhythmic or asys-

tolic phenotypes. To illustrate this result, Figure 3A shows

traces from ibutilide treated hiPSC-CMs showing progressively

arrhythmic traces with increasing dose (manifested by action

potential prolongation and EADs). The trained CNN generated

a continuous, dose-dependent increase in arrhythmia probabil-

ity based on the waveform input (Figure 3B). Note that the

calculated 50% arrhythmia class probability (EC50, triangle)

was lower than the free Cmax value (dashed line), indicating

that arrhythmia is detected at therapeutic concentrations of

the drug. Consistent with the dependence of contractility on

intracellular [Ca2+], the calcium channel blocker nifedipine

showed a dose-dependent induction of asystole (Figure 3C)

that corresponded with continuous increase in asystole

probability determined by the CNN (Figure 3D). Similarly,

dose-response curves can be calculated for any compound

regardless of whether arrhythmic risk or even pharmacokinetic

data are known.

Quantitative metrics of drug safety
The preceding analysis was applied to the entire dataset (37

drugs, 8 hiPSC lines). Examples of CiPA-classified high (ibuti-

lide), intermediate (ondansetron), and low (verapamil) arrhythmic

risk compounds are shown with 3 drugs (flecainide, citalopram,

and aspirin) that are not among the CiPA set but showed effects

consistent with published clinical data (Figure 3E; Table S1; the

entire dataset is shown in Data S1). In general, compounds clas-

sified by CiPA as having higher TdP risk displayed lower EC50

values when normalized by Cmax (Figure 3F). To quantify this

observation, we elaborated the torsadogenic safety margin,

defined as the log10(EC50/Cmax).

To visualize the relationship between the torsadogenic

safety margin and clinical risk, we rank-ordered the com-

pounds by their torsadogenic safety margin (Figure 3G). 8

out of the top 9 places were occupied by drugs classified

by CiPA as carrying high risk (Table S1). The safety margin

generally correlated with the CiPA-assigned clinical risk,

although some exceptions were noted. Droperidol, classified

as having intermediate risk by CiPA, ranked 7th highest,

whereas bepridil, classified as high-risk by CiPA, was ranked

17th, placing it among intermediate-risk drugs. Mexiletine

and ranolazine showed safety margin values comparable to

intermediate-class drugs, as reported in other hiPSC-CMs

studies,13,14,38 despite being considered a low-no risk by

CiPA classification.

The torsadogenic safety margin to classify risk can be used as

a predictor in a logistic regression model to evaluate discretized

CiPA risk. To compare to existing literature, we created a model

to assign drugs to high-intermediate and low-no-risk discrete

categories. This model resulted in an area under the curve

(AUC) value of 0.95 (Figure 3H), higher than previously proposed

models that use human-defined predictors applied to our data-

set (Figure S3).13 In addition, we trained models to distinguish

high- and low-risk compounds (AUC = 0.97) and intermediate

and low-risk compounds (AUC = 0.8) (Figure 3H).

We computed the torsadogenic safety margin of 9 additional

drugs not contained in the CiPA collection (amiodarone,

amitriptyline, aspirin, citalopram, digoxin, epinephrine, erythro-

mycin, flecainide, and fluoxetine). We determined their risk by

comparing their rank position against the CiPA reference com-

pounds (Figure 3G). Flecainide ranked among high-risk drugs,

whereas citalopram, fluoxetine, and amiodarone ranked as in-

termediate risk, and erythromycin was at the border between

high and intermediate-risk. The probability of arrhythmia EC50

values could not be determined for amitriptyline, aspirin,

digoxin, and epinephrine, indicating that they are no- or low-

risk drugs in agreement with the clinical literature on these

drugs (Table S1). We conclude that the continuous nature of

the torsadogenic safety margin allows it to stratify the risk of

drugs at a finer scale than discrete categorization, in which

all drugs within the same category (e.g., high risk) are consid-

ered equal.

DCM and HCM mutations influence responses to
proarrhythmic drugs
Next, we asked whether the CNN could discern the influence of

patient genetics on drug-induced arrhythmia. To test this idea,

we focused on variants that cause familial DCM and HCM.

Certain DCM and HCM-causing variants place patients at risk

for ventricular arrhythmias, and current treatment guidelines

call for caution in treating familial DCM and HCM patients with

torsadogenic drugs.39,40 The mechanisms responsible for

arrhythmia in familial DCM and HCM involve altered Ca2+ and

Na+ flux as well as tissue remodeling (e.g., elevated fibrosis) in

addition to K+ current inhibition41–43 that is responsible for

most drug-induced TdP.44 Despite these clinical and mecha-

nistic associations, the contribution of DCM and HCM to drug-

induced TdP risk has not been addressed quantitatively.
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Furthermore, an in vitro system to quantify TdP probability would

aid in elucidating risk mechanisms.

We used the trained CNN to determine whether DCM and

HCM mutations increase TdP probabilities in response to drug

treatment. To remove the influence of background genetics,

we created a panel of isogenic DCM and HCM lines by intro-

ducing disease-causing mutations into the healthy donor hiPSC

line HD.15S1 (Figure 4A). The DCM-causing RBM20 p.R634Q

and PLN p.R14del variants and the HCM-causing MYBPC3

p.R943X and TPM1 p.K37E variants are recognized as ‘‘at

risk’’ for fatal arrhythmia.29,30,32,33 In contrast, the DCM TNNT2

p.R183W is reported to confer less arrhythmic risk.34

Action potential waveforms in hiPSC-CMs derived from each

line were recorded at baseline and upon dose-escalation treat-

ment with the 37 drugs. Results in the mutant lines were

comparedwith the isogenic control to determine the contribution

of the gene variants. Most drugs showed similar torsadogenic

safety margins in the DCM and HCM hiPSC-CMs as for the

isogenic control, although some trended toward increased risk

(e.g., ibutilide and droperidol) (Figure 4B and 4E). In contrast,

the asystole safety margin (calculated analogously using the

EC50 values of the probability of asystole) revealed a strong influ-

ence of DCM and HCM genotype on drug effects (Figure 4C).

For example, ibutilide, dofetilide, and droperidol showed a
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Figure 3. Development of the torsadogenic safety margin

(A) Representative traces of different concentrations of the torsadogenic drug ibutilide.

(B) Proarrhythmic dose-response curve (solid line) plotting the probability of arrhythmic class from the traces shown in (A). 50% probability of arrhythmic value

EC50 (triangle). Clinical maximum free plasma concentration, Cmax (dashed line).

(C) Representative traces of different concentrations of the calcium channel blocker nifedipine.

(D) Proarrhythmic dose-response curve (solid line) plotting the probability of asystole class from the traces shown in (A). 50% probability of asystole value EC50

(triangle). Clinical maximum free plasma concentration, Cmax (dashed line). Average of 3 differentiation batches per cell line with 3 technical repeats per dose in

each batch.

(E) Dose-response curves of for other drugs and their CiPA risk classification.

(F) Color-coded dose-response curves where probability of arrhythmic 0–1 is encoded as green-red, and the dose is normalized by Cmax.

(G) Torsadogenic safety margin for each drug and healthy donor line of the screen. Drug names are color-coded based on CiPA classification.

(H) Receiver operating characteristic (ROC) curves for using the torsadogenic safety margin as predictor for a model to identify high-intermediate-risk drugs

versus no-low, high versus no-low, and intermediate versus no-low.
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heightened propensity to cause asystole in the DCM variants

RBM20 p.R634Q and PLN p.R14del, and the HCM causal vari-

ants MYBPC3 p.R943X, and TPM1 p.K37E relative to the

isogenic control hiPSC-CMs (Figures 4C and 4F). Interestingly,

hiPSC-CMs carrying the DCM TNNT2 p.R183W variant (that is

less arrhythmogenic in patients) had a similar profile to the

isogenic healthy donor control (Figures 4C and 4F).

DISCUSSION

Current in vitro proarrhythmia assays rely on themeasurement of

human-defined features of cardiac electrophysiology, such as

APD and beat rate.6,13,45 However, arrhythmias present complex

geometries, such as EADs, that are challenging to quantify by

conventional metrics. In practice, arrhythmic phenotypes are
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Figure 4. Influence of DCM and HCM gene variants

(A) Myopathic gene variants were introduced by CRISPR-Cas9 gene editing onto a common healthy donor hiPSC line.

(B) Torsadogenic safetymargin for each drug and healthy donor line of the screen for the HCMandDCMcell lines and the healthy donor isogenic line. Drug names

are color-coded based on CiPA classification.

(C) Asystolic safety margin for each drug and healthy donor line of the screen for the HCM and DCM cell lines and the healthy donor isogenic line. Drug names are

color-coded based on CiPA classification.

(D) Hypothesized model for increased sensitivity of arrhythmogenic cell lines to TdP and asystole (see discussion).

(E) Dose-response curves of probability of arrhythmic in HCM and DCM lines and the isogenic control cell lines, treated with ibutilide, droperidol, vandetanib, and

nifedipine. Point markers indicate EC50 with error bars at a 95% confidence interval. Shaded region signifies all traces were asystolic at that concentration range.

Average of 3 differentiation batches per cell line with 3 technical repeats per dose in each batch.

(F) Dose-response curves of probability of asystolic in HCM and DCM lines and the isogenic control cell lines, treated with ibutilide, droperidol, vandetanib, and

nifedipine. Point markers indicate EC50 with error bars at a 95% confidence interval. Average of 3 differentiation batches per cell line with 3 technical repeats per

dose in each batch.
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typically classified based on categorical descriptors (e.g., sus-

tained ventricular tachycardia or after depolarizations) or binary

variables (e.g., presence or absence of EADs) that require human

interpretation of the action potential.13,14,38 Treating arrhythmic

phenotypes as yes/no parameters imposes an artificial threshold

for an arrhythmia that depends on human intuition and cannot

quantify progression from normal to arrhythmic waveforms as

a function of drug dose, chemical modification, or hiPSC ge-

netics. More fundamentally, human intuition is not based on an

established ground truth regarding the in vitro effect of drugs

that cause arrhythmia in patients. Thus, the motivation for this

study was that human-defined metrics might not capture fea-

tures of the in vitro waveforms that correspond with the actual

arrhythmic risk of the drugs in people.

We developed our deep learning algorithm to overcome the

limitations of human-defined metrics by recognizing features

uniquely associated with drug-induced arrhythmia in hiPSC-

CMs. Training a CNN to discriminate features was based on a

dataset of 3 classes of action potential traces: (1) traces gener-

ated by treating hiPSC-CMs with high doses of drugs that cause

ventricular arrhythmia in people (class: arrhythmic), (2) traces

generated with low doses of safe compounds (class: non-

arrhythmic), and (3) traces in which drugs induced asystole,

which is characteristic of high doses of Ca2+ channel blockers

(class: asystole) but also resulted from treatment with very

high doses of proarrhythmic drugs (Figure 2). The probability

of classification as arrhythmic and asystolic was a continuous

dose-dependent metric that quantified the behavior of a drug.

Relating the EC50 values for these probabilities to the free

plasma concentration of a drug used in clinical practice (free

Cmax) defined a torsadogenic safety margin for each drug (Fig-

ure 3). In hiPSC-CMs from healthy donors, the torsadogenic

safety margin accurately predicted the clinical risk of drugs

with an AUC of 0.95 (Figure 3H), representing an improvement

over previously published multiparametric methods based on

human classification (Figure S3).

Patients with structural heart diseases such as DCM and HCM

are at risk for drug-induced arrhythmia. They should be carefully

monitored using electrocardiographic and othermodalities when

treated with drugs at risk for inducing arrhythmia.40 We applied

the torsadogenic and asystolic safety margins to traces gener-

ated by treating isogenic hiPSC-CMs carrying gene variants

that cause DCM and HCM in patients. The CNN probabilities

and the calculated safety margins revealed that pathological

gene variants associated with arrhythmic cardiomyopathies in

patients sensitized hiPSC-CMs to adverse proarrhythmic and

asystolic effects of high-risk drugs. In particular, hiPSC-CMs

carrying pathogenic variants in PLN, RBM20, TPM1, and

MYBPC3 associated with increased arrhythmic risk in pa-

tients29,30,32,33 trended toward increased probabilities of being

classified as arrhythmic (Figures 4B and 4D) and showed highly

significant increases in the probabilities of asystole (Figures 4C

and 4E) compared with isogenic controls.

The finding that arrhythmogenic DCM and HCM gene variants

increase the risk of torsadogenic drugs has implications for un-

derstanding the electrophysiological substrates for arrhythmia.

The genetic lesions examined here affect sarcomeric, RNA

splicing, and Ca2+ handling proteins. Electrophysiological re-

modeling in familial DCMandHCM includes reduced repolarizing

K+ currents (IK) and increased intracellular diastolic Ca2+ and late

Na+ (INaL) current, as reviewed.42,43 For example, these current

changes have been reported in isolated CMs from mice, human

myectomy samples, and hiPSCs carrying MYBPC3 mutations

that are functionally equivalent to the p.R943X truncation muta-

tion used in this study.41,46–48 A downstream circuit involving

calmodulin-dependent protein kinase II CaMKII sustains electro-

physiological remodeling49,50 and decreases repolarizing IK.
51

Decreased IK in the hiPSC-CMs, which are more depolarized

relative to adult CMs (at least in monolayer culture),52,53 would

enhance the effect of torsadogenic drugs44 and is a possible

mechanism for their asystolic effect in hiPSC-CMs carrying the

DCM and HCM mutations (Figure 4D).

In conclusion, the deep learning algorithm recognized in vitro

arrhythmic features in the hiPSC-CMs based on drug effects. It

did not rely on human adjudication nor human-defined in vitro

hiPSC-CM arrhythmic phenotypes; instead, it focused the

CNN on recognizing hiPSC-CM phenotypes associated with pa-

tient drug responses. We derived safety margins from the rela-

tionship between the machine-generated class probabilities

and the free plasma concentrations of each drug. Unlike cate-

gorical descriptors of arrhythmia (such as EADs, action potential

prolongation, and triangulation), the CNN class probabilities

map each trace to a continuous spectrum spanning non-

arrhythmic to arrhythmic and asystolic phenotypes. Overall,

the calculated safety margins more accurately discriminated

high-, intermediate-, and low-risk drugs than prior methods

based on human-defined features and revealed arrhythmogenic

HCM and DCM variants increase sensitivity to drug-induced

arrhythmia. Thus, the recognition of hiPSC-CM features of

arrhythmia by deep learning should improve the detection of

risky compounds during development as well as assign risk to

gene variants of unknown significance.

Limitations of the study
Deep learning has the inherent limitation that the machine-

learned features typically lack human-intelligible meaning (the

so-called ‘‘black box’’ problem). In other words, the mathemat-

ical operations that the machine has optimized to calculate the

probability of arrhythmia are too abstract to be interpretable by

humans and cannot be ascribed to action potential features.

Although we cannot query the CNN to understand the basis

for classification, visual inspection of the traces revealed that

the dose-dependent increases in arrhythmia probability corre-

sponded to action potential (AP) prolongation, EADs, and alter-

nans. The CiPA reference collection causes a limited range of

arrhythmogenic phenotypes (typically AP prolongation and

EADs). We have found that the CNN (R.S., unpublished data)

can be applied to a broader range of phenotypes (e.g., DADs,

sustained and non-sustained ventricular tachycardia associated

with cardiac electrophysiological disorders)54–56 by increasing

the number of possible classifications (i.e., the number nodes

in the last layer of the CNN).

Certain drugs in this study (droperidol, ranolazine, and mexile-

tine) presented as ‘‘riskier’’ than in actual clinical practice while

bepridil appeared less ‘‘risky’’ as discussed above. Previous

studies using hiPSC-CMs similarly misclassified these

drugs.13,37 This might reflect a limitation in using hiPS-CM data-

sets to classify these drugs. Concerning the deep learning
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methodology, we speculate that the features needed to accu-

rately classify these drugsmight have beenmasked by variability

in the waveforms in the current dataset and that a larger dataset

might be adequately powered to train the neural network to

correctly define the risk of these drugs.
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SUMMARY

For large libraries of small molecules, exhaustive combinatorial chemical screens become infeasible to
perform when considering a range of disease models, assay conditions, and dose ranges. Deep
learning models have achieved state-of-the-art results in silico for the prediction of synergy scores.
However, databases of drug combinations are biased toward synergistic agents and results do not
generalize out of distribution. During 5 rounds of experimentation, we employ sequential model optimi-
zation with a deep learning model to select drug combinations increasingly enriched for synergism and
active against a cancer cell line—evaluating only �5% of the total search space. Moreover, we find that
learned drug embeddings (using structural information) begin to reflect biological mechanisms. In silico
benchmarking suggests search queries are �5–103 enriched for highly synergistic drug combinations
by using sequential rounds of evaluation when compared with random selection or �33 when using
a pretrained model.

MOTIVATION Galvanized by the COVID-19 pandemic, we wanted to systematically identify efficacious
drug combinations from the plethora of safe drugs that could hypothetically exhibit antiviral activity.
The infeasibility of extensive combinatorial screens triggered the need for new methods that would
require substantially less screening than an exhaustive evaluation. Outside of biology, there has been
much interest in how areas of machine learning, including active learning and sequential model optimi-
zation, can be utilized to efficiently explore large spaces of possibilities through the intelligent acquisi-
tion and interpretation of data. Sequential model optimization has received much interest within
biomedicine, with a focus on systems with well-described individual components, e.g., biomolecular
design, chemical assays, etc. We wanted to apply a similar philosophy to quickly identify synergistic
drug combinations to alter the phenotype of a cellular model system (cell viability as proof of concept),
where the relationship between the chemical inputs and resulting phenotypic output is not well under-
stood and is subject to experimental biases.
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INTRODUCTION

Drug combinations are an important therapeutic strategy for

treating diseases that are subject to evolutionary dynamics, in

particular cancers and infectious diseases.1,2 Conceptually, as

tumors or pathogens are subject to change over time, they

may develop resistance to a single agent3—motivating one to

target multiple biological mechanisms simultaneously.4 Discov-

ering synergistic drug combinations is a key step toward devel-

oping robust therapies, as they hold the potential for greater ef-

ficacy while reducing dose and hopefully limiting the likelihood

of adverse effects. For example, in a drug repurposing scenario

(i.e., uncovering new indications for known drugs), the ReFRAME

library of �12,000 clinical-stage compounds5 leads to � 72

million pairwise combinations; this does not appear tractable

with standard high-throughput screening (HTS) technology—

even at a single dose.6 Moreover, with patient-derived organoids

(PDOs) being examined as a biomarker within personalizedmed-

icine clinical studies,7,8 the search space expands further to

identify efficacious drug combinations specific to the mutation

profile in question.

With the recent COVID-19 global health crisis, there has been

the need for rapid drug repurposing that would allow for expe-

dited and derisked clinical trials. Due to the complexity of select-

ing drug combinations and the minimal training data publicly

available, studies have typically been limited toward monother-

apy repurposing from a variety of angles—often involving artifi-

cial intelligence (AI) techniques to provide recommendations.9

The dearth of drug combination datasets is due to the large

combinatorial space of possible experiments available—ulti-

mately limiting the quality of drug synergy predictions. Moreover,

databases of drug combinations are biased toward suspected

synergistic agents, and thus making predictions outside the

scope of the training dataset can be challenging.

The goal of this work is to discover synergistic drug combina-

tions while only requiring minimal wet-lab experimentation. One

cost-efficient tool at our disposal is sequential model optimiza-

tion (SMO), whereby a machine learning (ML) model selects ex-

periments (i.e., pairs of drugs) that it would like to be evaluated (in

this case, for drug synergism). Both highly informative experi-

ments (‘‘exploration’’) and experiments that double down on

promising data-driven hypotheses (‘‘exploitation’’) can be

selected.10 Between rounds of experimental evaluation, the

model is iteratively adapted to new observations (via model

training), which allows performance to gradually improve. This

SMO process allows for queries that are more and more en-

riched with highly synergistic combinations, ultimately leading

to reduced experimentation when compared to an exhaustive

search.

There have now been a number of approaches for predicting

the effects of and subsequently prioritizing drug combinations.11

Classic bioinformatics approaches have focused on using ML

and network statistics over specified features of drugs (e.g., mo-

lecular fingerprints12), cell lines (e.g., transcriptomics, copy-

number variations13), and interactome topology between bio-

molecules (e.g., protein-protein interactions, chemical-genetic

interactions,14 or gene regulatory networks15). Initiatives such

as the Dialogue on Reverse Engineering Assessment and

Methods (DREAM) have led to a plethora of methods being

benchmarked against one another in prospective challenges

through the generation of novel datasets.16 Complex deep

learning architectures, which have set state-of-the-art perfor-

mance across a number of domains,17 have been used to predict

both adverse drug-drug interactions18,19 and synergistic drug

combinations.20–22 Sequential approaches, wherein several

rounds of selection are performed, have also been explored in

the context of drug combinations; for example, Kashif et al.23

have proposed a heuristic-based (as opposed to a model-

based) exploration strategy.

We present a SMO platform that can guide wet-lab experi-

ments: RECOVER, a deep learning regression model that pre-

dicts synergy using molecular fingerprints as inputs. To motivate

the use of RECOVER, we demonstrate a real-world use case

whereby one observes both: a �5–103 estimate for the enrich-

ment of synergistic drugs identified using SMO when compared

with selecting drug combinations at randomand a�33 improve-

ment when compared with selecting drugs in a single batch us-

ing a pretrained model. We then perform a retrospective valida-

tion to benchmark the performance of ourmodel and understand

its generalization abilities using the DrugComb database—

largely pertaining to cancer cell line data.24 Thereafter, we eval-

uate our SMO pipeline in silico, which allows the model to select

the most relevant data points to be labeled in order to discover

the most promising combinations while reducing model uncer-

tainty. Finally, we test RECOVER prospectively in an in vitro

experimental setting, whereby we discover novel synergistic

combinations active against a breast cancer model cell line,

MCF7, which is also represented within our training dataset.

With an SMO platform available in conjunction with an appro-

priate in vitro assay, one has a powerful tool to rapidly respond to

a future public health crisis. To encourage use by the scientific

community, we detail a configuration that can be trained on a

personal computer or laptop without requiring dedicated

computational infrastructure. Remarkably, high predictive power

is not a prerequisite for such an SMO system to be utilized effec-

tively. In fact, as we are trying to identify pairs of drugs in pro-

spective experiments that have more extreme synergy scores

than those drug combinations evaluated within previous experi-

ments (i.e., our training dataset), we cannot necessarily expect to

have high predictive power. However, we achieve our ultimate

goal: the identification of highly synergistic drugs—not building

highly accurate ML models. This work forms a proof-of-concept

demonstration of RECOVER—which should then motivate

greater community adoption of the method and extensions

thereof.

RESULTS

RECOVER: SMO platform for rapid drug repurposing
RECOVER is an open-source SMO platform for the optimal sug-

gestion of drug combinations (see Figure 1). Pairs of drug feature

vectors are fed into a deep neural network, which is used for the

prediction of synergy scores. These feature vectors include mo-

lecular fingerprints as well as a one-hot encoding identifying a

drug. For a full description of the model, see method details

and Figure S4A.
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Our core focus is the prediction of pairwise drug combination

synergy scores. While many mathematical descriptions of syn-

ergy have been proposed,1 in the following work, we utilize the

Bliss synergy score due to its simplicity and numerical stability.

In the context of cell viability, the Bliss independence model as-

sumes that in the absence of synergistic effects, the expected

fraction of viable cells after treatment with drugs d1 and d2 at

doses c1 and c2, written Vðc1;c2Þ, is identical to the product of

the fractions of viable cells when utilizing each drug indepen-

dently, i.e., Vðc1ÞVðc2Þ. We then define the Bliss synergy score

as the difference between these quantities such that a fraction

of surviving cells Vðc1; c2Þ smaller than the expected proportion

Vðc1ÞVðc2Þ leads to a large Bliss synergy score,

sBlissðc1; c2Þ = Vðc1ÞVðc2Þ � Vðc1; c2Þ
= Iðc1; c2Þ � Iðc1Þ � Iðc2Þ + Iðc1ÞIðc2Þ; (Equation 1)

where Ið $Þ = 1 � Vð $Þ is the experimentally measured growth

inhibition induced by drug d1, d2, or both together at the associ-

ated doses. Given a dose-response matrix for the two drugs, a

global synergy score can be obtained through a pooling strategy.

In our case, we take the maximum value, i.e.,

bsBliss = max
c1 ;c2

sBlissðc1; c2Þ : (Equation 2)

Inmany studies, the arithmeticmean is taken to calculate a global

synergy score. Unfortunately, different laboratories use different

dose intervals for each drug, and typically, each drug combina-

tion shows a synergistic effect at a specific dose-pair interval.

Therefore, the arithmetic mean is highly sensitive to the chosen

dose interval and is thus why we choose to prioritize a max-pool-

ing strategy as in Equation 2. Unless explicitly stated otherwise, a

synergy score refers to a global max-pooled Bliss score.

In addition to the prediction of synergy, RECOVER estimates

the uncertainty associated with the underlying prediction. More

precisely, for a given combination of drugs, RECOVER not only

provides a point estimate of the synergy but estimates the distri-

bution of possible synergy scores for each combination, which

we refer to as the predictive distribution.We define themodel un-

certainty as the standard deviation of the predictive distribution.

An acquisition function is used to select the combinations that

should be tested in subsequent experiments.25 This acquisition

function is designed to balance between exploration, prioritizing

combinations with highmodel uncertainty, whereby labeling said

points should increase predictive accuracy in future experi-

mental rounds; and exploitation, the selection of combinations

believed to be synergistic with high confidence.

In summary, this SMO setting consists of generating recom-

mendations of drug combinations that will be tested in vitro at

regular intervals. At each step, RECOVER is trained on all the

data acquired up to that point, and predictions are made for all

combinations that could be hypothetically tested experimentally.

The acquisition function is then used to provide recommenda-

tions for in vitro testing. The results of the experiments are then

added to the training data for the next round of experiments,

and the whole process repeats itself.

Task variations

We note that there are two separate but related frameworks in

which RECOVER can be utilized.

In the preclinical framework, RECOVER can be used to recom-

mend drug combinations expected to be effective within a single

specified cell model system: the model is asked to provide syn-

ergy predictions from inputs ðd1;d2Þ for drugs d1 and d2 and to

subsequently provide recommendations in the same format.

The preclinical framework is most relevant to early drug discov-

ery; for example, one may wish to prioritize assets within a port-

folio that synergize with an already approved drug. Naturally, we

Figure 1. Overview of the RECOVER workflow integrating both a novel machine-learning pipeline and iterated wet-lab evaluation
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can apply RECOVER to any disease areas where in vitro cell

models are routinely used in early drug discovery, e.g., collagen

deposition (fibrosis), T cell activation (immunology), etc.

In an alternative setup, the personalized framework requires

RECOVER to recommend drug combinations expected to be

effective in one or more available model systems: the model is

asked to provide predictions and subsequent recommendations

of the form ðd1;d2;mÞ for drugs d1, d2, andmodel systemm. The

personalized framework is most relevant to novel personalized

cancer treatment scenarios, wherein multiple patient-derived

primary models are available and recommendations are sought

to optimize the use of approved drugs in a highly translatable

but low-throughput system.26,27

Illustration of SMO approach

To illustrate the benefits of the SMOapproach, we perform a pre-

liminary simulation to mimic a scientist with a limited experi-

mental budget of 300 drug combinations to be tested—with

the aim to find synergistic drug combinations. We assume that

the experimentalist has access to a trained ML model, and we

show the benefit of RECOVER within both frameworks. At a

high level, we specify that there are two options: either to

perform all 300 experiments in one go, or to perform experiments

in 10 batches of 30.

We note that many ML papers focus on the personalized

framework,20,28–30 i.e., recommendations are of the form ðd1;

d2;mÞ, so we demonstrate the benefit of SMO in this scenario

first. All models are pretrained on the O’Neil drug combination

study,31 and validation by the experimentalist is simulated

through uncovering specific examples from the NCI-ALMANAC

drug combination study32 restricted to all cell lines that are

covered in both studies. In more detail, we test the following op-

tions: random, all 300 combinations are queried at random;

DeepSynergy, the synergies of all combinations in ALMANAC

are predicted using the DeepSynergy model with the top 300

predictions queried; RECOVER without SMO, the synergies of

all combinations in ALMANAC are predicted using the

RECOVER model with the top 300 predictions queried;

RECOVER, 30 combinations are queried at random followed

by an SMO using batches of 30; and DeepSynergy with SMO,

which is the same SMO as before but using the DeepSynergy

model.

In Figure 2, we report the reversed cumulative density of the

synergies of all 300 queried combinations (higher is better). We

also report the level of enrichment defined as the ratio between

the reversed cumulative density of a given strategy’s queries

and the reversed cumulative density of random queries. We first

observe that DeepSynergy20 performs worse than random, while

RECOVER (without SMO) performs slightly above the level of

randomness. Most importantly, the bulk of the performance

gain comes from utilizing our SMO procedure. Finally, when

RECOVER and DeepSynergy are compared head to head in

the SMO setting, the RECOVER model outperforms the

DeepSynergy model.

The threshold for ‘‘highly synergistic’’ is challenging to specify,

but we note that a drug combination in clinical trials has a max

Bliss synergy score of 54.9 (see discovery and rediscovery of

novel synergistic drug combinations). On this basis, these exper-

iments suggest that our approach can reduce by a factor of �5–

103 the number of experiments needed to discover and validate

highly synergistic drug combinations when compared with

random selection or by a factor of >33 when using a pretrained

model selecting all drug combinations at a single time point.

For completeness, we show in Figure S1A that we achieve a

broadly similar level of enrichment when evaluating a preclinical

framework task for three different cell lines. The experimental

setup is exactly the same except that the search space is now

restricted to a specific cell line within the NCI-ALMANAC study

and recommendations are of the form ðd1; d2Þ. We note that

tasks drawn from the preclinical framework are slightly more

challenging than the tasks drawn from the personalized frame-

work, as the model cannot evaluate the same drug pairs in

new cell lines (which would likely lead to drug synergy), and so

the performance is marginally lower.

Scope of RECOVER capabilities and experimental

validation

Due to the operational complexities in prospectively evaluating

performance in the personalized framework, we focus on the

preclinical framework for experimental proof of concept and

demonstration of the RECOVER system. In Figure S1H, we

report key aspects of our prospective validation and how it com-

pares with the ones performed in other published works. We

note that other works focused on generalizing to a new cell line

and/or combinations of drugs both seen during training. Our pro-

spective validation focuses on testing the ability of RECOVER to

generalize to combinations involving one drug seen during

training and one unseen drug, which is a harder task. In addition,

validation involves, for the first time, repeated experimentation

via an integrated wet-lab/dry-lab system.

Retrospective testing of RECOVER informs the design of
future experiments
In preparation for prospective validation within the preclinical

framework, we evaluate the performance of RECOVER in silico

Figure 2. Simulations suggest that RECOVER can enrich for highly

synergistic combinations given a limited budget

Reversed cumulative density of queried combinations following different

querying strategies. (Inset) Level of enrichment. Shaded area corresponds to

synergies > 54:9. Results are averaged over 3 seeds.
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using previously published data. In order to understand the

scope of scenarios to which RECOVER can be applied to, we

benchmark RECOVER against baseline models and test our

ability to generalize in several out-of-distribution tasks without

incorporating SMO. Thereafter, we perform backtesting

through simulating mock SMO experiments (see SMO develop-

ment and evaluation in the method details, as well as in

Figures S4D–S4F).

Due to the limited size of most individual drug combination

studies reported in the literature, we focus on the NCI-

ALMANAC viability screen32 summarized in Figure S1B. We

refrain from combining multiple datasets because of the severe

batch effects between studies; in Figure S1F, we show a scatter-

plot that demonstrates inconsistency between the O’Neil et al.31

series of drug combination experiments against their NCI-

ALMANAC counterpart. We note that this may result from varia-

tion in the readouts of these experiments, mutations in cell lines,

or differences in harvest times.

We investigate whether RECOVER can generalize beyond the

training (and validation) set in various ways: (Figure 3Ai.) what is

the performance on test cases drawn from the same distribution

as the training set? Can RECOVER generalize when (Figure 3Aii.)

one of the drugs is unseen (during training) or (Figure 3Aiii.) when

both of the drugs are unseen? These tasks are illustrated graph-

ically in Figure 3A. For each task, we benchmark against several

alternative models along with RECOVER, including a linear sup-

port vectormachine (SVM), Boosting Trees, andDeepSynergy.20

In addition, we evaluate a version of RECOVER without the

invariance module and another version for which the identities

of the drugs (as well as cell lines) have been shuffled (see model

development and evaluation in the method details for further in-

formation on models and hyperparameter optimization proced-

ures). Through understanding the capability of RECOVER to

generalize, we can design prospective experiments with a

greater confidence of success.

In Figures 3B and 3C, we report the test performance metrics

of RECOVER across each of the first three tasks. Examining per-

formance within task (i.) in Figure 3A, test statistics appear

modest; however, we demonstrate limits on achievable perfor-

mance—resulting from experimental noise and non-uniformity

of synergy scores (see Figure S2F). From task (i.) to task (iii.) in

Figure 3A, we note a drastic drop in performance for all models,

but this effect is alleviated if only one of the drugs has not been

seen before (see task ii. in Figure 3A). We also investigate addi-

tional scenarios from the personalized framework, presented in

Figure S2A, wherein we consider multiple cell lines, as well as

A B

C

Figure 3. Retrospective testing demonstrates the ability of RECOVER to generalize when at least one of the drugs has been seen during

training but not beyond that

(A) Overview of the different tasks on which RECOVER has been evaluated in preparation for the prospective evaluation within the preclinical framework. Each

task corresponds to a different way to split the training, validation, and test sets and aims at evaluating a specific generalization ability of the model. (i.) Default.

Combinations are split randomly into training/validation/test (70%/20%/10%). Only the MCF7 cell line is used. (ii.) One unseen drug. 30% of available drugs are

excluded from the training and validation sets. The test set consists of combinations between a drug seen during training and an unseen drug. Combinations

among seen drugs are split into training and validation (80%/20%). Only the MCF7 cell line is used. (iii.) Two unseen drugs. Similar to task (ii.), but the test set

consists of combinations of two unseen drugs.

(B and C) Performance of RECOVER and other models for the three different tasks. Standard deviation computed over 3 seeds.
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training and test sets coming from different studies, and report

performance in Figure S2B.

We note that our benchmarking justifies various aspects of our

deep learning architecture: the RECOVER permutation invari-

ance module can provide improvement in performance across

some scenarios; moreover, RECOVER (shuffled labels) fails

compared with other methods on task (ii.) in Figure 3A with

one unseen drug and is at the level of randomness on task (iii.)

in Figure 3A with two unseen drugs. In these cases, we demon-

strate that drug structure is actually leveraged by themodel in or-

der to generalize (to some extent) to unseen drugs. However,

RECOVER (shuffled labels) performs well compared with other

models on the default task; thus, merely knowing the identity

of the drugs is sufficient when both drugs have been seen in

other combinations.

From the above results, we can recommend that any prospec-

tive experiments should require that one of the two drugs in the

combination have been seen in some context before (see task

iii. in Figure 3A). Due to the severe batch experiments between

studies in the public domain, as shown in Figure S1F, models

fail to generalize to data coming from a different study, as shown

in Figure S2B (study transfer task). As such, shouldwewant to uti-

lize publicly available resources, we will have to incorporate such

data intelligently. To this end, we investigated using transfer

learning, wherein one trains a model on a large dataset (known

as pretraining) and thereafter refines the model on a smaller data-

set (known as fine-tuning)—typically with some aspect of the task

or the data changedbetween the two instances.We show that this

is possible and beneficial (compared to not leveraging existing

data) in an SMO setting between the O’Neil et al.31 and NCI-

ALMANAC studies (see Figure S4E). Remarkably, even with min-

imal correlation between studies, we are able to observe the ben-

efits of transfer learning in this scenario. These findings suggest

that we use transfer learning within prospective experiments.

Prospective use of RECOVER enriches for selection of
synergistic drug combinations
From the in silico results, we now test RECOVER prospectively

using a cancer cell model, leveraging publicly available data for

pretraining. Using the insights from retrospective testing of

RECOVER informs the design of future experiments, the queri-

able space of drug combinations was designed to include drug

pairs where only one compound was already seen by the model

during pretraining—with a second compound not seen before.

For details about the model used to generate recommendations,

see recommendation generation in the method details. The

MCF7 cell line was used to generate 636 dose-response

matrices (see experimental protocol for details).

We perform multiple rounds of RECOVER-informed wet-lab

experiments and observe sequential improvements in perfor-

mance. The rounds of experiments are described as follows.

(1) Calibration. The initial round of experiments was per-

formed to supplement publicly available data with 20

randomly selected unseen drug combinations. Further-

more, we confirmed the previous in silico result that we

could not predict synergy scores (prior to transfer learning

adaptation) through selecting 5 highly synergistic combi-

nations selected by RECOVER. In addition, 5 more drug

combinations were selected by a graph neural network

(GNN) model in the style of Zitnik et al.18 that we did not

develop further due to the computational overhead. It

was also specified that each drug should appear in, at

most, a single drug combination queried.

(2) Diversity. Thereafter, drug combinations are selected us-

ing model predictions in conjunction with the upper con-

fidence bound (UCB) acquisition function. To ensure

that we quickly observe all single drugs at least once (as

we showed that the model cannot generalize well to com-

binations involving unseen drugs), we select our batch of

experiments as follows. First, we rank combinations ac-

cording to their acquisition function score. We then find

the first combination that involves a drug that has not

yet been used (or that is involved in one of the combina-

tions from the current batch) and add it to the batch. We

repeat this until we have 30 combinations in the batch.

(3) SMO search. RECOVER is now free to select any drug

pairs of interest for testing, with the requirement that

any single drug may be selected no more than 5 times

(to avoid oversampling and depletion of chemical stock).

Three such rounds have been performed in this manner.

The search space was constructed as follows. The NCI-

ALMANAC includes 95 unique drugs that were employed in

combinations tested on the MCF7 cell line (see gray area in Fig-

ure 4B). We chose to deprioritize drugs without a well-character-

ized mechanism of action (MoA) to facilitate biological interpre-

tation and validation of the results (see light blue area in

Figure 4B). To achieve this, drugs in NCI-ALMANAC were anno-

tated with known targets extracted from the ChEMBL drug

mechanism table: 54 drugs matched with at least one known

target were thus selected. An additional 54 drugs were selected

by clustering drugs with known MoAs that are included in the

DrugComb24 database but not in NCI-ALMANAC. Hence, a

search space including a total of 2,916 drug combinations was

obtained (see the white area in Figure 4B). In Figure 4A, we illus-

trate the pairs of drugs selected in each round of experiments.

We now evaluate both the synergy scores of the drug combi-

nations selected and the underlying accuracy of the model. In

Figure 4C, we plot the cumulative density function of each exper-

imental round. We note that the mean of the max Bliss synergy

scores significantly increases between the first and the third

rounds (t test, p< 0:05); this trend further continues by the fifth

round (t test, p< 10� 5). Moreover, the distribution starts devel-

oping a heavier tail toward high max Bliss synergy scores. This

emergent heavy tail already appears significant when comparing

the distribution in the first SMO search round to the background

distribution of synergy scores in NCI-ALMANAC (Kolmogorov-

Smirnov test, p< 0:025). Finally, the highest max Bliss synergy

score observed increases between rounds until the second

SMO search round, whereby the behavior appears to have satu-

rated. These results are focused on the max Bliss score, which

RECOVER was specifically designed to optimize for; for

completeness, we also report similar evaluations based on

different aggregation strategies of the Bliss scores (see

Figure S3A).

6 Cell Reports Methods 3, 100599, October 23, 2023

Report
ll

OPEN ACCESS



Figure 4. In vitro evaluation demonstrates the significant enrichment for highly synergistic combinations through prospective use of

RECOVER

(A) Network plot indicating which pairs of drugs were identified at each round; line color and width represent synergy.

(B) Heatmap representing drug combinations used during pretraining (NCI-ALMANAC), in the five subsequent rounds of experiments, and combinations

excluded from the analysis. Drug combinations that were not available for pretraining or were not selected for experiments are represented in white.

(C) Cumulative density plot of max Bliss synergy score for each experimental round; (inset) boxplot representation and calibration round details.

(D) Predicted versus actual plot for max Bliss synergy score. The dotted line corresponds to y = x. (Inset) The explained variance is plotted for each experimental

round.

See also Data S1 and Tables S1 and S2.
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All combinations queried throughout the five rounds, and

their corresponding synergy scores, are provided in Table S1.

We notice that specific drugs tend to appear in several of the

combinations recommended by RECOVER. Consistent with

the literature, we observe that some compounds appear more

often than others within synergistic combinations,33 a pattern

that can also be observed within the NCI-ALMANAC study

(see Figure S1C). However, this does not make the identifica-

tion of synergistic combinations a trivial problem: even drugs

that lead to the highest number of synergistic combinations

are non-synergistic most of the time. No single drug within

the NCI-ALMANAC study has a synergy score >40 more than

10% of the time (or 12% when considering only the MCF7

cell line data within the NCI-ALMANAC study; see Figure S1G).

In comparison, our last two rounds of in vitro experiments

yielded 20%–30% of combinations with a synergy >40 (see Fig-

ure 4C), while the model had only observed less than 5% of the

search space.

In Figure 4D, we plot the predicted versus actual plot of the

max Bliss synergy score. Here, the point size in the scatterplot

is inversely proportional to the model uncertainty; therefore, we

display confident predictions as large points, and vice versa. As

expected, more confident predictions are closer to the y = x

line. Less-confident predictions are associated with larger

max Bliss synergy scores. Moreover, we systematically under-

estimate the measured max Bliss synergy score (more points

far above y = x line); this intuitively makes sense, as we are

trying to identify highly synergistic drug combinations that are

not within our training dataset. Figure 4D (inset) displays the in-

crease in (weighted) explained variance from one round to the

next; weights are chosen to be the reciprocal of the model un-

certainty. We find that, initially, the explained variance is nega-

tive, i.e., our model has no predictive power. However, as the

experiments continue, a positive trend emerges such that we

have a small amount of predictive power by the end of the

experiments.

This increase in performance and in the synergy of queried

combinations from one round to the next demonstrated in Fig-

ure 4C is expected and can be attributed to two factors. First,

we needed to adapt the model to predict in a new experimental

setting. From the study transfer task in Figure S2A, we know that

this would otherwise be an impossible task and thus motivates

the calibration round. After the calibration round, one expects

that the systematic biases learned by the model during pretrain-

ing are minimized. At this point, the model is in a scenario akin to

task (ii.) in Figure 3A. Second, we can improve performance

further by enforcing that (almost) all drugs have been evaluated

at some point, which subsequently motivated the diversity

round. Thereafter, the model is free to optimize during the

SMO rounds to the extent that it is able to, leveraging model pre-

dictions and model uncertainties. In fact, due to activity cliff

effects,34 there are likely fundamental limits on quantifying the

relationship between model uncertainty and model error; in

Figures S4B and S4C, we perform a preliminary investigation

of these relationships. From our prospective use of RECOVER,

we not only discover highly synergistic drug combinations but

also demonstrate that high predictive power is not strictly neces-

sary to identify synergistic drug combinations.

Discovery and rediscovery of novel synergistic drug
combinations
In Data S1, we provide detailed information on our experimental

results using the Combenefit package35 (including single-agent

dose-response curves, combination dose-response surfaces,

and synergy levels) for the 14 most synergistic drug combina-

tions (from the �150 tested), with alfacalcidol and crizotinib

achieving a max Bliss score above 90. Of note, we rapidly

discover drug combinations with similar mechanisms and effi-

cacy to those already in clinical trials. Namely, within the first

SMO search round we found (1) alisertib and pazopanib and

(2) flumatinib and mitoxantrone. The concentration intervals for

the drugs used in both drug combinations that show synergy

are consistent with therapeutically relevant plasma concentra-

tions36,37 or as observed in in vivo animal experiments

(flumatinib).38

Pazopanib inhibits angiogenesis through targeting a range of

kinases including vascular endothelial growth factor receptor

(VEGFR), platelet-derived growth factor receptor (PDGFR), c-

KIT, and fibroblast growth factor receptors (FGFRs); in contrast,

alisertib is a highly selective inhibitor of mitotic Aurora A kinase.

Synergism between the two agents is hypothesized to be linked

to the observation that mitosis-targeting agents also demon-

strate antiangiogenic effects. In an independent study, the com-

bination of alisertib and pazopanib has successfully completed

phase 1b clinical trials for advanced solid tumors.36 The combi-

nation of flumatinib and mitoxantrone appears to be linked to a

similar mechanism but does not seem to have been studied in

the biomedical literature. While flumatinib is a tyrosine kinase in-

hibitor targeting Bcr-Abl, PDGFR, and c-KIT, mitoxantrone is a

type II topoisomerase inhibitor.

RECOVER drug embeddings capture both structural and bio-

logical information. To get a better insight into the drug embed-

dings learned by RECOVER, we report uniformmanifold approx-

imation and projection (UMAP) visualizations of the drug

embeddings generated by the single-drug module in Figure 5.

The color of each point is chosen by applying principal-compo-

nent analysis (PCA) to the binary matrix of drug-targets and

scaling the first 3 dimensions into an RGB triplet; high transpar-

ency indicates drugs with a PCA target profile close to the

average PCA target profile (calculated over all drugs). In short,

the position of the points indicates what RECOVER has learned

about the drugs, and the color represents information known

about drug mechanisms from other databases not used in the

training procedure.

We note that the RECOVER model does not use information

on drug targets; however, drugs with similar colors are located

within similar areas of UMAP space. We also observe broad sen-

sible patterns in UMAP space based on structure; for example,

most kinase inhibitors (with the -nib suffix) appear in the top

left hand of the UMAP.Moreover, drugswith similar mechanisms

tend to be co-located; for example, see structurally diverse DNA-

targeting agents in the bottom right of the UMAP. As a counter-

point, we observe that agents with either mixed agonist/antago-

nist profiles, including selective estrogen receptor modulators

(SERMs), or targeting genes through indirect mechanisms,

including mammalian target of rapamycin (mTOR), lead to less

structured patterns in UMAP space. We believe that this is a

8 Cell Reports Methods 3, 100599, October 23, 2023

Report
ll

OPEN ACCESS



highly novel observation and that it suggests that were this

screen to be scaled to a larger library of small molecules, one

may be able to group diverse structures into common biological

mechanisms.

DISCUSSION

Drug combinations can achieve benefits unattainable by mono-

therapies and are routinely investigated within clinical trials (e.g.,

PD-1/PD-L1 inhibitors combined with other agents39) and uti-

lized within clinical practice (e.g., antiretroviral treatment of HIV

where between 3 and 4 agents may be used40). To this end,

we have presented the SMO toolbox RECOVER for drug combi-

nation identification. We have demonstrated its ability to gener-

alize to combinations involving one unseen drug, and crucially,

we have shown the benefit of repeated experimentation via an in-

tegrated wet-lab/dry-lab system. We showcase a general meth-

odology, consisting of careful analysis of the properties of our

ML pipeline—such as its out-of-distribution generalization ca-

pacities—to help us design key aspects of our prospective ex-

periments, to eventually ensure a smooth and successful inter-

action between the SMO pipeline and the wet lab. Highly

synergistic drug combinations have been identified, and the re-

sulting learned embeddings appear to capture both structural

and biological information. RECOVER can quickly (in our pro-

spective experiments: <5% of the total search space evaluated)

identify patterns in the drug-drug landscape of synergies, in or-

der to provide recommendations significantly enriched for syner-

gism and alleviate the need for exhaustive studies. We provide

commentary on key aspects on our approach covering datasets,

computational methodology, wet-lab techniques, and evaluation

metrics.

We note the considerable difficulties of working with publicly

available datasets with discrepancies in the data generation pro-

cess. Inconsistent media between multiple labs, the presence of

de novo mutations within immortalized in vitro cell models, and

differences in experimental protocols limit ease of data integra-

tion between laboratories.41 In particular, systematic biases limit

generalizability of model predictions to subsequent prospective

experiments. Within oncology, protein-coding mutations may

drive resistance to any one chemotherapeutic agent but also

large-scale gene dosing changes from non-coding mutations,42

copy-number variations,43 and aneuploidy.44 These issues have

been somewhat alleviated through careful choice of metric to

optimize (e.g., max pooled Bliss synergy scores have reduced

sensitivity to selected drug concentration ranges, compared to

averaged scores) and only using publicly available data for pre-

training (when compared with using these data for prediction

without adaptation).

From a computational perspective, we experimented with a

range of more complicatedmodels. For example, we considered

using GNNs to model biomolecular interactions,45 which have

numerous benefits including greater biological interpretability

and incorporation of prior knowledge, namely drug-target and

Figure 5. RECOVER tends tomapmolecules with common biological mechanisms closely together (reflected by the similar colors of nearby

points), even when structures are dissimilar

UMAP of RECOVER drug embeddings with the color scheme generated to indicate the known target profile of the drugs; drugs that have molecular targets in

common will have similar colors. Drug embeddings are learned using information from drug structures and viability screen data only.
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protein-protein interactions. However, these models only re-

sulted in marginal increases in performance while requiring sub-

stantially more computational resources. We believe that the

limited diversity of the dataset and the simplicity of the task, a

one-dimensional regression, did not allow these more advanced

approaches to reach their full potential. Therefore, we prioritized

a strategy that could be run quickly for rapid turnaround of rec-

ommendations for experimental testing.

When considering an SMO setting, we are required to collapse

highly complex information into a single number to be optimized

(i.e., a synergy score). While there is an opportunity to improve

choices of metric (synergy scores may not reflect absolute cell

viability), assay readouts that better characterize cell state

(compared with cell viability) may provide a stronger starting

point. In particular, an omics readout, through transcriptomics46

and/or single-cell profiling,47,48 and high content imaging49 pro-

vide a much higher-dimensional measurement of cell state.

Furthermore, derived properties from these readouts may be

more interpretable, e.g., pathway activation50 or extracellular

signaling.51 Remarkably, even while only using cell viability as

a readout, we achieved significant progress in identifying novel

synergistic drug combinations.

Furthermore, the usual metrics for the evaluation and training

of regression models may not reflect well the efficiency of

models in iterative settings. This is due to the fact that, in our

SMO setting, only the prediction of extreme values is important.

This work provides an example of this effect: model performance

on prospectively queried combinations was modest, but a sub-

stantial enrichment was achieved. Some metrics have been pro-

posed to focus specifically on the prediction of extreme values.52

Developing training objectives that specifically aim at maxi-

mizing SMO performance will be the object of future work.

From the systematic screen by Jaak et al.,33 they conclude

that synergy between drugs is rare and highly context depen-

dent. RECOVER provides a means to identify such synergies

while requiring substantially less screening than an exhaustive

evaluation; thus, we expect that RECOVER and similar such sys-

tems may have a role to play when addressing diverse applica-

tion areas such as personalized cancer treatment and novel

emergent infectious disease such as the COVID-19 pandemic.

Limitations of the study
In addition to the points mentioned above, a few restrictions

were necessary in the name of feasibility concerning the valida-

tion experiments. In particular, only one cell model was used for

validation, and the exhaustive evaluation of every possible drug

combination was not performed. With regard to the downstream

analysis, while we investigated the relationship between drugs

and their mechanisms of action, many such mechanisms are

not fully elucidated. Finally, our investigation into the relationship

between the structural similarity of drug pairs, their synergy, the

associated model error, and model uncertainty is preliminary in

nature.
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SUMMARY

The accurate selection of neoantigens that bind to class I human leukocyte antigen (HLA) and are recognized
by autologous T cells is a crucial step in many cancer immunotherapy pipelines. We reprocessed whole-
exome sequencing and RNA sequencing (RNA-seq) data from 120 cancer patients from two external
large-scale neoantigen immunogenicity screening assays combined with an in-house dataset of 11 patients
and identified 46,017 somatic single-nucleotide variant mutations and 1,781,445 neo-peptides, of which 212
mutations and 178 neo-peptides were immunogenic. Beyond features commonly used for neoantigen prior-
itization, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding pro-
miscuity, and the role of themutated gene in oncogenicity were predictive for immunogenicity. The classifiers
accurately predicted neoantigen immunogenicity across datasets and improved their ranking by up to 30%.
Besides insights into machine learning methods for neoantigen ranking, we have provided homogenized
datasets valuable for developing and benchmarking companion algorithms for neoantigen-based immuno-
therapies.

INTRODUCTION

In recent years, it has been demonstrated across tumor types

in patients receiving adoptive transfer of autologous in vitro

cultured tumor infiltrating lymphocytes (TILs) that T cells specif-

ically recognizing mutated neoantigens play a key role in medi-

ating effective anti-tumor responses.1–3 Furthermore, neoanti-

gens are found to be implicated in the therapeutic efficacy of

immune checkpoint inhibitor antibodies,4,5 and several studies

show immune recognition following neoantigen-based vac-

cines,6,7 where patients experience no major toxicities.

Mutated proteins are processed and presented on tumor cells

as human leukocyte antigen (HLA) binding peptides (HLAp) and

are recognized by cognate T cell receptors (TCRs) as ‘‘non-self.’’

Targeting such neoantigens enables immune cells to distinguish

between normal and cancerous cells, diminishing the risk of

autoimmunity. Technological improvements in genomics, bioin-

formatics, and in silico HLA binding prediction tools have facili-

tated breakthroughs in the discovery of neoantigens encoded

by somatic non-synonymous single-nucleotide variants (SNVs),

insertions and deletions (InDels), and frameshifts (FSs) that arise

during the process of tumorigenesis and are not expressed

by normal cells.8,9 Furthermore, advanced immunological

screening techniques have facilitated the detection and isolation

of neoantigen reactive T cells.10–13

The development of innovative clinical treatment options tar-

geting neoantigens requires the identification of neoantigens

that are targeted by autologous T cells. However, only a small

percentage of neoantigens are immunogenic, which makes their

identification challenging.14 Various algorithms that score and

rank neoantigens based on their likelihood of being presented

on the patient’s HLA molecule15–18 and being specifically recog-

nized by high avidity T cell clonotypes19–23 have been proposed.

Other groups have provided pipelines for mutation detection and

neoantigen prioritization.24,25 Despite all these efforts, a recent

study shows little consensus in the neoantigen ranking per-

formed by different laboratories,26 and the performance of

immunogenicity predictionmethods varies between different da-

tasets.14 As datasets with hundreds or thousands of neoantigen

immunogenicity measurements become available,26–28 machine

learning (ML) methods are able to train powerful immunogenicity

prediction algorithms taking into account the multidimensional
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Figure 1. Statistics reveal the reproducibility of our pipeline and the bias in mutation and neo-peptide subsets

(A) Data processing workflow applied in this paper. WES and RNA-seq data were downloaded and processed. Mutations and neo-peptides were annotated with

the results from the immunogenicity screens, and the feature scores and annotations were added. The NCI data matrix was split into train- and test sets, and the

classifiers were trained on the subset of screened mutations or neo-peptides in NCI-train (see STAR Methods for naming rules for the data subsets) using

Hyperopt parameter optimization and 5-fold cross validation (CV) in 10 replicate runs. The trained classifiers were tested on all neo-peptides or mutations in NCI-

train (using leave one out CV), NCI-test, TESLA, and HiTIDE cohorts.

(legend continued on next page)
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structure of the data. In a recent example, the ranking based on

anMLmodel has outperformed a ranking based on binding affin-

ity only.28 This improvement in prioritizing immunogenic neoan-

tigens is particularly important for neoantigen or mRNA vac-

cines, where only a limited set of neoantigens are included.2,3,6,7

Here, we studied the performance of state-of-the-art ML algo-

rithms using two public datasets (National Cancer Institute [NCI]

with 112 patients27,28 and Tumor Neoantigen Selection Alliance

[TESLA] with 8 patients26) plus an additional in-house dataset

composed of 11 patients, 2 of which were already included in

a previous publication.13 We reprocessed all whole-exome

sequencing (WES) and RNA sequencing (RNA-seq) data with a

uniformmutation detection pipeline and investigated the robust-

ness of different ML algorithms and data preprocessing steps.

We demonstrated that classifiers trained on the large NCI data-

set can accurately predict the immunogenicity of neoantigens

on each test dataset. With orthogonal features, our ML based

approach outperformed previously published methods28 and

increased the number of immunogenic peptides ranked in the

top 20 by 30%. Compared with the ranking reported in the

TESLA consortium study,26 our ML methods performed favor-

ably and came first in two out of three ranking evaluationmetrics.

We provide classifiers and data processing methods for the

improved prioritization of immunogenic neoantigens. The uni-

formly processed datasets are unique resources for other

groups active in the field of immunogenicity prediction and in

the development of innovative neoantigen-based therapies.

RESULTS

Our mutation detection is consistent with published
results
Cancer cells can have several hundred somatic mutations (SMs),

but only a few of them may be presented as HLA binding neo-

peptides and recognized by T cells. The accurate selection of a

limited number of mutations (e.g., for mRNA cancer vaccine) or

neo-peptides (e.g., for multimer based sorting of neoantigen-

specific T cells) that are most likely to be immunogenic is a

crucial step in cancer vaccines and adoptive transfer of T cells.

Here, we used two public (NCI27,28 and TESLA26) and one in-

house (the Human Integrated Tumor Immunology Discovery

Engine; HiTIDE) dataset to train and test ML algorithms for the

prioritization of mutations and neo-peptides (Figure 1A). The

datasets consisted of WES and RNA-seq data as well as immu-

nogenicity assay results for hundreds of mutations and/or neo-

peptides (Table 1; Data S1). Themain difference between the da-

tasets laid in the waymutations (mut-seq, typically 25 amino acid

(aa) sequenceswithmutation in the center) or neo-peptides (neo-

pep, peptides of length 8–12 including mutation) were selected

for immunogenicity screening and in the screening methods

used (STAR Methods). In the NCI dataset, many mutations and

neo-peptides were physically screened as reported by Gartner

et al.28 In a cohort of 112 patients, whichwe defined here asNCI_

mut-seq, for almost all the expressed mutations, minigenes en-

coding the mutations and 12 flanking wild-type (WT) aa on each

sidewere transcribed in vitro and transfected into autologous an-

tigens presenting cells (APCs) followed by a co-culture with TIL

cultures and interferon (IFN)-g enzyme-linked immunospot

(ELISpot) immunogenicity measurement. For 80 of the 112 pa-

tients, a cohortwedefined as theNCI_neo-pep, additional immu-

nogenicity screens were performed to identify the optimal neo-

antigenic epitopes and their HLA restrictions. The top-ranked

neo-peptides predicted by NetMHCpan to span immunogenic

mutations from the abovemini-gene assaywere pulsed on autol-

ogous APCs or APCs engineered to express the patient’s HLA-I

alleles, prior to co-culture with TILs and IFN-g ELISpot readout.

Neo-peptides with positive ELISpot readout were assigned as

immunogenic. All other neo-peptides containing the immuno-

genic mutation and all neo-peptides containing screened non-

immunogenic mutations were considered as non-immunogenic.

In the TESLA study, immunogenicity of selected neo-peptides

was determined with labeling of subject-matched TILs or periph-

eral blood mononuclear cells (PBMCs) with HLA-I peptide

multimers.26 The immunogenicity of selected neo-peptides in

the HiTIDe cohort was interrogated with IFN-g ELISpot assays

following incubation of the peptides with either bulk TILs or neo-

antigen enriched TILs (NeoScreenmethod) grown from tumor bi-

opsies in the presence of APCs loaded with neo-peptides

(Figures S1A and S1B), as previously described.13 Importantly,

in the TESLA and HiTIDE datasets, only a selection of neo-pep-

tides was experimentally screened, and the immunogenicity

annotation of the mutations was inferred accordingly.

First, we uniformly processed all data, conducting HLA typing,

mutation calling, RNA-seq gene expression analysis, and read

coverage assessment at the specific loci of the SM. To assure

capturing all relevant mutations in the NCI dataset, prior to the

ML training, we assessed the extent to which we were able to

reproduce the genomic analysis results published by Gartner

et al.28 First, for a subset of 80 of the 112 patients, for which

HLA typing results from Gartner et al. were available, we

(B) Comparison of SM SNVmutation counts obtained from Gartner et al.28 and our analysis for a subset of 80 patients, where each patient corresponds to a data

point. The size and color of the points reflect the percentage of mutations identified by Gartner et al. that were also identified in our analysis. (C) to (H) show

different statistics of the patient data for the NCI, TESLA, and HiTIDE datasets, where only SM SNVs were considered. The statistics were obtained from all

mutations or neo-peptides per patient (left group of boxes), or from the subsets of screened and immunogenic mutations or neo-peptides per patient (middle and

right group of boxes).

(C) Mutation counts.

(D) Neo-peptide counts. The outliers in (C) and (D) originate fromNCI patients for which all non-immunogenic peptides were annotated as not-screened in Gartner

et al.28

(E) Average MixMHCpred %rank scores.

(F) Average RNA expression in TPM.

(G) Average RNA coverage of the mutations in %.

(H) Average number of immunogenic neo-peptides per mutation.

(I) Immunogenic mutation counts as a function of the mutation counts for each patient in the NCI, TESLA, and HiTIDE datasets.

See also Figure S1.
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compared the HLA allotypes. The HLA typing was overall consis-

tent, and we found that, for 74 patients, all alleles were identical,

for 4 patients, 1 or 2 alleles weremissed by us or byGartner et al.,

and in 2 patients, there were conflicting alleles but with similar

sequence motifs (Data S2). In addition, the SNV SM counts we

obtained correlated well with the counts reported by Gartner

et al. (Figure 1B; Data S2). Overall, in the subset of 80 patients

we identified 31,880 SNV SMs, including 82.2% (26,420 out of

32,148) of the SNV SMs published by Gartner et al., where

67.5% of the patients (54 out of 80) had a SNV SM overlap larger

than 80% (Data S2). For a few patients there was a substantial

variation in the number of mutations detected and for two

patients we called less than 50% of the mutations reported by

Gartner et al. Interestingly, we detected 143 of the 151 (94.7%)

immunogenic SNV SMs published in Gartner et al. (Data S2;

Figure S1C). Good correlations were also obtained when we

compared insertion and deletion mutations with and without

FSs (Figures S1D and S1E).

Immunogenicity-related feature scores highlight subtle
differences between datasets
Next, we added multiple feature scores (Data S3) reflecting

the propensity of a peptide to be presented, such as bulk RNA-

seq gene expression of the mutated gene and its expression

in the tissue-matched Cancer Genome Atlas (TCGA) (https://

www.cancer.gov/tcga) and the tissue-matched Genotype-Tis-

sue Expression (GTEx) atlas (https://gtexportal.org/), proteaso-

mal cleavage scores,29 tapasin binding,30 binding affinity to

HLA-I allotypes (NetMHCpan,15 MixMHCpred16), and stability

ranks.31 Other feature scores evaluated the dissimilarity of a

neo-peptide to the WT peptide counterpart (differential agreto-

picity index or DAI)19,22,32,33 and the potential of a neoantigen

to bind several alleles. A notable bias toward hydrophobic aa

was observed at T cell receptor contact residues within immuno-

genic epitopes.34We therefore employed also the PRIMEpredic-

tor, that captures such hydrophobicity related molecular proper-

ties associated with TCR recognition.23,35 We also used our

large-scale in-house immunopeptidome database (ipMSDB36)

of HLA-bound WT peptides identified by mass spectrometry

(MS) to assess the likelihood of neo-peptides to be naturally

processed and presented at the cell surface by HLA (see below

and in STAR Methods).

Last, it is well established that mutations in oncogenes and tu-

mor suppressors are enriched across cancers and specific sites

are more frequently mutated. Hoyos et al. has modeled the rela-

tionship between oncogenicity and immunogenicity for tumor

driver mutations, focusing on p53 mutations, and demonstrated

that hotspot mutations optimally solve an evolutionary trade-off

between oncogenic potential and neoantigen immunogenicity.37

Therefore, we scored SNV SM based on their appearance in the

population with the Integrative Onco Genomics (IntOGen) data-

base,38 and we predicted their oncogenic status (disease-driver

or neutral) with the CScape tool39 to assess the role of the muta-

tion in tumorigenesis.

Comparison of basic statistics across all three datasets (Data

S1) revealed that the number of SNV SMs called per patient was

highest for the TESLA dataset (Figure 1C), which contained only

melanoma and non-small cell lung cancer (NSCLC) samples that

are known for high mutational loads. In contrast, the number of

mutations per patient screened with the mini-gene approach in

the NCI dataset was higher than the mutations included in

neo-peptide screens in the TESLA and HiTIDE datasets. The

number of immunogenic mutations per patient was higher in

TESLA and HiTIDE, possibly because of differences in cancer

types and the sensitivity of immunogenicity screening methods.

In the NCI dataset—following the annotations provided in Gart-

ner et al.28—all neo-peptides originating from screened muta-

tions were considered as screened, even if only the mutation,

but not the neo-peptide was actually screened. Therefore, the

number of neo-peptides annotated as ‘‘screened’’ was much

higher in the NCI dataset (Figure 1D), and there was no difference

in binding affinity between screened and not-screened neo-pep-

tides (Figure 1E). In contrast, binding affinity was used as a

screening criterion in the TESLA andHiTIDE datasets (Figure 1E).

The RNA-seq gene expression values revealed small differences

between datasets. In all datasets, mutations selected for T cell

screening had higher RNA-seq gene expression, and this effect

was strongest in the HiTIDE- andweakest in NCI data (Figure 1F).

RNA-seq mutation coverage was consistently employed as a

screening criterion in all datasets, with the TESLA dataset

demonstrating the most pronounced utilization of this filter (Fig-

ure 1G). The number of immunogenic neo-peptides per mutation

was higher in HiTIDE and TESLA datasets (Figure 1H). In the

NCI and TESLA datasets, on average only one immunogenic

Table 1. Mutation and neo-peptide counts for the NCI, TESLA, and HiTIDE datasets and their subsets

Number of patients

(train or test datasets)

Immunogenicity screening

method Immunogenic Not immunogenic Not screened

NCI mutations 89 (train), 23 (test) minigenes, IFNg ELISpot 146 11,651 24,899

NCI neo-peptides 57 (train), 23 (test) peptides, IFNg ELISpot 103 418,872a 953,486

TESLA mutations 8 (test) in silico 36b,c 461b 6,231b

TESLA neo-peptides 8 (test) peptides, HLA-I peptide

multimers

34c 702 300,505

HiTIDE mutations 11 (test) in silico 30b 751b 1,812b

HiTIDE neo-peptides 11 (test) peptides, IFNg ELISpot 41 1,511 106,191
aNon-immunogenic NCI neo-peptide dataset contains three types of neo-peptides: the screened ones with negative immunogenicity test, the inferred

ones from immunogenic mutations that were not screened at the neo-peptide level, and the ones from screened but non-immunogenic mutations.
bImmunogenicity of mutations in TESLA and HiTIDE datasets was inferred from the immunogenicity screens of the respective neo-peptides.
cNeo-peptides are excluded if they match WT peptide or missing value cannot be imputed resulting in more mutations than neo-peptides.
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Figure 2. Exploring relationships between features and predictive value for immunogenicity

Scatterplots display the immunogenic (orange) and non-immonogenic (blue) neo-peptides or mutations with their regression lines for the screenedNCI_neo-pep/

mut-seq dataset. Only a random subsample of 10,000 points of the non-immunogenic points is shown in the scatterplots. Histograms display the feature scores

of immunogenic (orange) and non-immunogenic (blue) neo-peptides for the screened NCI_neo-pep, TESLA_neo-pep, and HiTIDE_neo-pep datasets. The scale

of the immunogenic neo-peptide counts is given on the right y axis; the scale of the non-immunogenic counts is on the left y axis. The p values shown in the

histogram titles evaluate the difference between immunogenic and non-immunogenic feature values and are calculated by a c2 test.

(A) Scatterplot of MixMHCpred and NetMHCpan %rank scores. Red dashed lines mark the 0.5% ranks.

(B) Histogram for ‘‘Number Binding Alleles’’ scores. Note the different log-scales for immunogenic and non-immunogenic neo-peptides counts.

(C) Violin plot of MixMHCpred log-rank DAI for neo-peptides with mutations at anchor and non-anchor positions.

(D) TCGA expression versus RNA-seq expression.

(E) GTEx expression versus RNA-seq expression.

(F) Scatterplot of ipMSDB Peptide Count per protein versus RNA-seq expression.

(G) ipMSDB Peptide Count per protein versus ipMSDB Peptide Score.

(legend continued on next page)
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neo-peptide was detected per immunogenic mutation, whereas

in the HiTIDE cohort this number was slightly higher. The number

of immunogenic neo-peptides per patient correlated with the

total number of SNV SMs detected in a patient (Figure 1I). In

summary, the NCI dataset had the highest number of screened

mutations and neo-peptides with the least selection bias and is

therefore most suitable for training ML models.

Features beyond binding affinity and gene expression
correlate with immunogenicity
Next, we investigated how the mutation or neo-peptide features

correlated with immunogenicity. By examining these correla-

tions, we sought to gain insights into the factors that contribute

to immunogenicity and potentially identify key determinants of

immune recognition. We found that, in agreement with published

results,26,28,40 features describing proteasomal cleavage, trans-

porter associated with antigen presentation (TAP) import into

endoplasmic reticulum and binding stability, correlated with

immunogenicity in all three datasets, and they correlated poorly

with binding affinity (Figures S2A–S2C). In addition, as previously

demonstrated,26,28 features reflecting the binding affinity be-

tween a neo-peptide and the patients’ HLA-I alleles were among

the strongest predictors for immunogenicity for all three datasets

(Figure S2D). Although NetMHCpan and MixMHCpred predic-

tion%rank scores correlated, they contained complementary in-

formation. For example, in the NCI dataset, ten immunogenic

neo-peptides did not pass the binding threshold of %rank %

0.5 with NetMHCpan, but they passed it with MixMHCpred (Fig-

ure 2A). We found that promiscuous neo-peptides that were pre-

dicted to bind to multiple patient’s HLA-I alleles were more likely

to be immunogenic than neo-peptides predicted to bind a single

allele (Figure 2B), possibly because binding to multiple alleles

increases the chance for HLA-I presentation and makes the

presentation of neo-peptides more resistant to loss of specific

HLA-I alleles.41 Along the same lines, mutations with a higher

number of neo-peptides weakly binding to a patient’s HLA-I

alleles, were more likely to be immunogenic (Figure S2E). The

PRIME prediction rank differences between immunogenic

and non-immunogenic neo-peptides were similar to those of

MixMHCpred or NetMHCpan (Figure S2F). DAI values for bind-

ing prediction log-ranks were lower for immunogenic neo-pep-

tides (Figure S2G) in agreement with previous results.19,22,33 As

expected, the location of mutations in an anchor position was

not significant per se (Figure S2H), but it became important in

combination with DAI values, which were significantly lower

(t test p value 2.19 3 10�17) for immunogenic mutations at an-

chor positions (Figure 2C). Based on the analyzed data, there

was no obvious tendency for mutations to be placed in the mid-

dle of a neo-peptide, and the enrichment of immunogenic muta-

tions in the middle of 10 mers reported for the TESLA dataset26

could not be confirmed for the NCI and HiTIDE datasets (Fig-

ure S2I). As expected, immunogenic neo-peptides were strongly

enriched in the group of 9 or 10 mer peptides, reflecting the

length preferences of HLA-I alleles (Figure S2J). HLA binding-af-

finity predictors that incorporate peptide length preferences

were used to select the neo-peptides for immunogenicity

testing. Hence, based on these three datasets, it is challenging

to determine whether this enrichment stems from a bias in se-

lecting neo-peptides or if it represents an intrinsic characteristic

of immunogenic peptides. It has been demonstrated that gene or

protein expression positively impacts HLA-I presentation40,42

and immunogenicity.26,28 In all three datasets, immunogenicmu-

tations had higher gene expression and higher coverage of the

mutation in the patient’s tumor bulk RNA-seq data compared

with non-immunogenic ones (Figures S3A and S3B). To investi-

gate the possibility of substituting a patient’s gene expression

values with data from publicly available datasets, particularly in

scenarios where the patient’s tumor tissue RNA-seq data are un-

available, we included tissue-matched RNA-seq expression

data from the TCGA and GTEx repositories as additional fea-

tures. For both immunogenic and non-immunogenic mutations,

the TCGA gene expression correlated strongly (Pearson’s

R = 0.818) with its expression in the patient’s cancer tissue (Fig-

ure 2D). The gene expression in GTEx correlated to a lower

extent (Pearson’s R = 0.645), and the regression line for immuno-

genic mutations was shifted to higher RNA-seq values

compared with the regression line for non-immunogenic ones

(Figure 2E). We concluded that immunogenic mutated genes

had higher gene expression in cancer tissues compared with

the matched healthy tissues in GTEx, and the expression values

were better captured by TCGA. Lastly, cancer cell fraction (CCF),

clonality, and zygosity were not associated with immunogenicity

(Data S3).

Our in-house ipMSDB database36 contains WT HLA-I and -II

ligands identified by MS in multiple healthy and cancerous hu-

man tissues and cell lines with various HLA allotypes. The

ipMSDB version used in this work contains 547,476 unique

HLA-I peptides, which we used to infer the HLA-I presentation

of a neoantigen based on the coverage of the corresponding

WT peptide and on the natural presentation of the source pro-

tein. We found that the number of ipMSDB peptides mapped

to a protein (‘‘ipMSDB Peptide Count’’) was significantly higher

for proteins containing immunogenic mutations across all three

datasets (Figure S3C). These data indicate that immunogenic

peptides in the three datasets preferably belong to proteins

that are naturally processed and presented, in agreement with

previous findings.18,36,43 ipMSDB Peptide Count for a given pro-

tein correlated (Pearson’s R = 0.498) with mRNA expression of

the corresponding gene (Figure 2F), but this correlation could

not fully explain the higher ipMSDB Peptide Count values for

immunogenic mutations (Figure S3D), suggesting that these fea-

tures are not fully redundant. In addition, the ‘‘ipMSDB Peptide

Score’’ measures the overlap between the WT peptide within

ipMSDB and the neo-peptides (Figure S3E). The correlation be-

tween the ipMSDB Peptide Score and the ipMSDB Peptide

Count (Pearson’s R = 0.435) reflects that proteins with overall

more ipMSDB peptides had a better chance to cover a neo-

peptide. However, the ipMSDB Peptide Score was higher for

(H) Histograms for ‘‘ipMSDB Peptide Match Type.’’

(I) Histograms for ipMSDB Peptide Match Type for neo-peptides with or without amutation at an anchor position of the HLA allele with the lowest MixMHCpred%

rank score.

See also Figures S2 and S3.
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Figure 3. Assessments of the classifier’s performance and feature importance

(A) Immunogenic neo-peptides were ranked per patient and the number of immunogenic neo-peptides in the top 20, 50, or 100 ranks was calculated per patient

and summed up for all patients in the NCI-test dataset. The ranking was performed either by NetMHCpan and RNA expression, MixMHCpred and RNA

expression as described in the text, or logistic regression (LR), XGBoost, or the voting classifier. ‘‘Gartner et al.’’ refers to the ranking reported in Gartner et al.28

The red dashed horizontal lines indicate the total number of immunogenic neo-peptides in NCI-test. The green lines mark the median performance of the voting

classifier in the top 20, 50, or 100 ranks according to their respective colors.

(B) As in (A), but for the TESLA dataset.

(C) As in (A), but for the HiTIDE dataset.

(D) Comparison of the fraction ranked (FR) score obtained by the voting classifier trained on NCI-train and tested on TESLA. FR scores of the TESLA participants

were obtained from Wells et al.26 The FR score gives us the fraction of immunogenic neo-peptides ranked in the top 100 per patient.

(E) Same as (D) but for the top-20 immunogenic fraction (TTIF) score. The TTIF score gives us the fraction of immunogenic neo-peptides among all screened neo-

peptides ranked in the top 20 per patient.

(legend continued on next page)
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immunogenic neo-peptides compared with non-immunogenic

ones (Figure 2G), and this shift was significant in all three data-

sets (Figure S3F). We also found a highly significant enrichment

of immunogenic neo-peptides, which either mapped exactly to

the WT counterpart sequences in ipMSDB or were fully included

in such sequences (Figure 2H). These results indicated that

immunogenic neo-peptides were preferably found in HLA-I pre-

sentation ‘‘hotspots’’ and that utilizing sequence matching to

ipMSDB proves to be an effective strategy for prioritizing

‘‘true’’ HLA-I binding neo-peptides, as long as the mutation

does not occur in an anchor position (Figure 2I). When mutations

arise in anchor positions, they tend to produce a predicted pep-

tide variant that exhibits superior binding affinity compared with

the original WT peptide especially for immunogenic peptides

(Figure 2C). Consequently, in these scenarios, the likelihood of

finding the WT peptide represented in the ipMSDB is reduced

(Figure 2I).

Further, we included features that evaluate the impact of a

mutation on the cellular or molecular function of the mutated

protein. Although Cscape39 is an oncogenicity predictor, we

demonstrated that it had also a predictive value for immunoge-

nicity (Figure S3G), possibly because oncogenic mutations

often destabilize the protein structure, leading to rapid degra-

dation of the protein and presentation on HLA-I.44 We also

included mutation annotations from the IntOGen38 database,

and we further found that mutations annotated as oncogenic

drivers were enriched for immunogenicity in all three datasets

(Figure S3H), and there was a slight immunogenicity enrich-

ment for mutations with a lower prevalence in the population

(Figure S3I).

Classifiers trained on a large unbiased dataset
accurately rank neo-peptides in other datasets
Neoantigen-based personalized immunotherapy strategies rely

on the selection of the most promising mutations or neo-pep-

tides. For both mutations and neo-peptides, we trained a sepa-

rate ML model, which calculates the probability that a mutation

or neo-peptide can induce a spontaneous immune response,

as was captured by the immunogenicity screening assays, and

this probability is then used for the ranking. First, we investigated

the ranking of neo-peptides. We used the Bayesian optimization

framework Hyperopt45 to train the classifiers and their hyper-

parameters on NCI-train (Figure 1A; see supplemental informa-

tion for the details). Through leave-one-out cross-validation

(CV) testing on the NCI-train dataset, we observed that the logis-

tic regression (LR)46 classifier’s performance showed improve-

ment as the number of non-immunogenic neo-peptides in the

training set increased (Figure S4A). Additionally, increasing the

number of Hyperopt iterations also contributed to the enhanced

performance of the LR classifier (Figure S4B). These findings

highlight the importance of a larger training set and extensive

Hyperopt iterations in optimizing the performance of the LR

and other classifiers for neo-peptide immunogenicity prediction.

Furthermore, the choice of data normalization method had an

impact on the performance of the LR classifier, as demonstrated

by Figure S4C. Notably, employing quantile normalization re-

sulted in a remarkable 134.0% increase in the number of immu-

nogenic neo-peptides ranked within the top 20, in comparison

with the scenario where no normalization was applied (Fig-

ure S4D). These findings underscore the importance of imple-

menting appropriate data normalization techniques, such as

quantile normalization, to enhance the accuracy and predictive

power of the LR classifier.

Furthermore, the choice of classifier algorithm had an impact

on the number of immunogenic neo-peptides ranked among

the top positions (Figure S4E). For NCI-train with leave-one-out

CV, LR performed best, followed by XGBoost,47 CatBoost,48

and the SVMs.49 The LR classifier was able to rank 49.1% of

immunogenic neo-peptides in the top 20, 62.2% in the top 50,

and 75.6% in the top 100 (Figure S4F; Data S4). The principal-

component analysis (PCA) plot (Figure S4G) revealed that LR

and XGBoost produce distinct and complementary rankings.

The plot visually demonstrated that these LR and XGBoost offer

diverse perspectives and capture different aspects of neo-

peptide immunogenicity, indicating the potential benefit of

leveraging their combined results for a more comprehensive

and accurate assessment of immunogenic rankings. Therefore,

we constructed a voting classifier, which averaged the immuno-

genic class probabilities of all ten LR and ten XGBoost classifier

replicates (STAR Methods). Across the NCI-test, TESLA, and

HiTIDE test datasets, the ranking of the voting classifier was al-

ways better or comparable to the rankings of the LR and

XGBoost classifiers (Figures 3A–3C). We concluded that the

voting classifier provides a ranking that is more robust and less

dependent on the dataset.

The performance ofML ranking can vary depending on the da-

taset used. To investigate this further we trained and tested the

LR classifier on HiTIDE with leave-one-out CV (see STAR

Methods) and compared it with the LR classifier trained on the

much larger NCI-train dataset. The HiTIDE-trained LR performed

clearly better on HiTIDE neo-peptides, but it performed worse on

the TESLA and NCI-test datasets (Figures S4H–S4J). The LR

classifiers had a preference for features such as RNA-seq

expression, CCF, and ipMSDB scores, which were used in the

HiTIDE cohort to select neo-peptides for immunogenicity

screening (Figure S4K). These findings demonstrated that ML

(F) Same as (D) but for the ‘‘area under the precision recall curve’’ (AUPRC) score. The AUPRC score gives us the ability of a ranking to place immunogenic neo-

peptides before non-immunogenic ones.

(G) Neo-peptide feature importance calculated using Shapley values for LR and XGBoost classifiers trained on NCI-train.

(H) Shapley values of the KTYQGSYGFRR neo-peptide (blue bars) from NCI-test patient 4,350 compared with average Shapley values of the top 20 ranked neo-

peptides of patient 4,350 (orange bars). LR classifier trained on NCI-train ranked the neo-peptide in rank 3.5 on average. The error bars indicate the standard

deviation over the ten replicate runs.

(I) Same as in (H) but for immunogenic neo-peptide DRNIFRHSVV of patient 4,324 in NCI-test (blue bars), which had an average rank of 1,920.1 in the 10

replicate runs.

(J) HLAp length distribution for HLA-C06:02 allele taken from MHC Motif Atlas (http://mhcmotifatlas.org/).

(K) Bare motif without pseudo-count correction obtained from the 75 HLA-C06:02 10 mers included in HLA Motif Atlas.

See also Figure S4.
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classifiers could easily capture inherent biases related to the se-

lection of neo-peptides for screening assays, potentially result-

ing in suboptimal rankings when applied to other datasets.

This justifies our approach of training our classifiers on the NCI

dataset, which is characterized by minimal bias, to mitigate the

impact of dataset-specific biases and achieve more accurate

and reliable rankings.

Next, we compared the performance of our ML ranking

methods with an alternative simple approached where neo-pep-

tides were initially sorted based onMixMHCpred or NetMHCpan

%rank scores and then by RNA-seq expression to resolve the

ties. We demonstrated the superior performance of the ML clas-

sifiers compared with this basic ranking strategy (Figures 3A–

3C). NetMHCpan performed better than MixMHCpred on the

NCI-test and TESLA datasets, where NetMHCpan was used to

select neo-peptides for screening, but lead to similar ranking

for HiTIDE, where MixMHCpred was used for the screening se-

lection. Finally, we compared our results with the rankings pub-

lished by Gartner et al.28 for the 23 patients in NCI-test. Our re-

sults demonstrated that LR, XGBoost, and the voting

classifiers ranked more immunogenic neo-peptides in the top

20, 50, and 100 ranks (Figure 3A; Data S4). Compared with Gart-

ner et al., LR placed 30.0% more neo-peptides into the top 20,

26.7% more into the top 50, and 11.8% more into the top 100.

In addition, we conducted a comparison between our ML

approach for the TESLA dataset and the consortium results re-

ported by Wells et al. for these data.26 Our ML ranking achieved

the best ranking among the TESLA participants when consid-

ering the three evaluation metrics introduced by Wells et al.,26

with an average rank of 2 compared with the second-best

average rank of 3.3 for the ‘‘owl’’ group. Specifically, our voting

classifier obtained a median ‘‘fraction ranked (FR)’’ score (see

STAR Methods) of 77.8% (Figure 3D), which was better than

the FR scores reported by all other groups participating in the

TESLA study. Our median ‘‘top-20 immunogenic fraction

(TTIF)’’ score of 0.25, was reached by only one other group (Fig-

ure 3E), whereas ourmedian area under the precision recall curve

(AUPRC) score (0.273) ranked fourth among all participants (Fig-

ure 3F). Because the highest-ranking neo-peptides in the lists

submitted by the TESLA participants were actually screened in

the immunogenicity screens, we here evaluated the TESLA par-

ticipants partially on their best-ranked peptides, whereas there

was no such bias for ourMLmethods. The results clearly demon-

strate that ourMLclassifiers, trained on theNCI-train dataset, ex-

hibited strong generalization capabilities, and yielded highly ac-

curate results when applied to the independent TESLA dataset.

In order to assess the significance of each feature in the LR

and XGBoost rankings, we computed the Shapley values asso-

ciated with each feature.50,51 This analysis allowed us to quantify

the contribution of each feature in determining the final ranking of

neo-peptides by these classifiers. Figure 3G shows that the

strongest Shapley values for LR and XGBoost stemmed from

MixMHCpred, NetMHCpan, and PRIME rank features, followed

by stability rank, TCGA expression and RNA-seq mutation

coverage, number of binding HLA alleles, MixMHCpred, DAI,

and ipMSDB overlap score. For example, Figure 3H demon-

strates the Shapley values for neo-peptide EKIALFQSL of patient

4,350 in NCI-test with an average rank of 48.1 in the ten LR rep-

licates, which ismuch better than rank 1,641 reported byGartner

et al. The better ranking resulted from the stronger binding affin-

ity reported by MixMHCpred, PRIME, and NetMHCpan for the

HLA-B39:01 allele compared with MHCFlurry v1.6, which was

used by Gartner et al., but also IntOGen scores, binding stability,

TCGA expression and ‘‘ipMSDB Peptide Match Overlap’’

contributed to the good rank. In contrast, the neo-peptide

DRNIFRHSVV from patient 4,324 in NCI-test was ranked poorly

by our LR classifier (average rank 1,920.1) and by Gartner et al.

(rank 24,392) because the peptide had poor %rank scores

for allele HLA-C06:02 by all used binding-affinity predictors

(Figure 3I), and also Gartner et al. reported a poor %rank

with MHCFlurry. The HLA-C06:02 allele binds mainly 9 mers

and only a few 10 mers (Figure 3J), resulting in a poor

MixMHCpred %rank for 10 mers, even if the 75 10 mer ligands

included in the major histocompatibility complex (MHC) Motif

Atlas52 show a clear preference for arginine in the second, and

leucine and valine in the 10th position (Figure 3K). Overall

ipMSDB and IntOGen features had lower Shapley feature impor-

tance, but their contribution to the ranking of immunogenic neo-

peptides was still evident (t test p value for rank_score increase is

2.543 10�8 for ipMSDB features, and 3.703 10�10 for IntOGen

features) (Figure S4L). Excluding these features from LR prioriti-

zation reduced the number of neo-peptides ranked in the top

20 in NCI-test by 16.1%.

Effective ranking of immunogenic mutations requires
dedicated training of classifiers
Most neoantigen-based cancer vaccination strategies use long

mutated peptides (15–25mers) or RNAmini-gene constructs en-

coding such sequences and rely on the selection of the most

promising mutations. When prioritizing mutations, the relative

importance of mutation features such as RNA-seq expression

or coverage is expected to change compared with their signifi-

cance in prioritization of the minimal neo-peptide sequences

(see below). Therefore, instead of using the above neo-peptide

classifiers to build a mutation ranking method, we trained muta-

tion classifiers from scratch using the mutation features (Data

S3). When we trained the LR and XGBoost classifiers on NCI-

train, XGBoost slightly outperformed LR (Figures 4A, S4M, and

S4N). For the NCI-test data, both LR and XGBoost performed

better in the top 20 than the ranking published by Gartner et al.

(Figure 4A; Data S4), but the difference was less pronounced

than for neo-peptides. Although binding-affinity features were

still most powerful (Figure 4B), the importance of non-HLA-

binding-related features, such as RNA-seq coverage, TCGA

expression, ipMSDB scores, and IntOGen scores features

increased compared with the corresponding neo-peptide

features, whereas the importance of binding-affinity ranks

decreased (Figure 4C). This emphasizes that prioritizing muta-

tions is different from prioritizing neo-peptides and requires

different ML strategies. As for neo-peptides, ipMSDB and

IntOGen features contributed complementary information and

improved LR based mutation ranking (t test p value for rank_

score increase is 0.0264 for ipMSDB features and 0.0844 for

IntOGen features) (Figure S4O). Our approach enabled us to

develop specialized classifiers dedicated to mutation and

neo-peptide prioritization, thereby ensuring a more tailored and

accurate assessment of their importance in the context of

neoantigen immunogenicity prediction.
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DISCUSSION

Accurate prediction and prioritization methods of patient-spe-

cific neoantigens is still an important barrier for development of

effective cancer vaccines and neoantigen-based T cell thera-

pies. Because currently the number of mutations included in a

personalized cancer vaccine is in the range of about 20 muta-

tions, the selection of mutations is rather straightforward in

case of low tumor mutational burden (TMB)53; however, this be-

comes a critical challenge in the medium to high TMB. Further-

more, the utilization of different validation assays for assessing

immunogenicity in various laboratories, along with the use of

diverse protocols for T cell isolation and expansion,54 has a po-

tential to introduce variations, underscoring the importance of

harmonizing datasets and providing prediction solutions with

generalized good performance across labs. Our systematic

analysis of immunogenic and non-immunogenic neoantigens,

demonstrated that many feature scores reflecting processes of

the antigen presentation machinery, such as binding affinity

and stability, RNA expression and coverage, the presence of

non-mutated counterparts of neo-peptides in immunopepti-

dome hotspots, binding promiscuity, and the role of the mutated

gene in oncogenicity, were all predictive for immunogenicity

across datasets and immunogenicity validation methods.

Indeed, a neoantigen quality model incorporated similar fea-

tures, such as the differential presentation and T cell cross reac-

tivity against the neoantigen and its WT counterpart.55 Variations

of this model were applied to predict the survival of patients

treated with anti-CTLA4 and anti-PD-1,55 to predict immune ed-

iting in long term survivors of pancreatic ductal adenocarcinoma

(PDAC),56 and the induction of neoantigen-specific T cell re-

sponses following treatment with personalized mRNA vaccine.53

A

C

B

Figure 4. Effective ranking of immunogenic mutations requires dedicated training of classifiers

(A) Immunogenic mutations were ranked per patient and the number of immunogenic mutations in the top 20, 50, or 100 ranks was calculated for each patient.

The y axis represents these numbers summed over all patients in the dataset. The red dashed horizontal lines indicate the total number of immunogenicmutations

in a dataset. The number of top-ranking immunogenic mutations is shown for patients in NCI-test for the LR, XGBoost, and voting classifiers. Gartner et al. refers

to the ranking reported in Gartner et al.28 The horizontal green lines mark themean performance of the voting classifier in the top 20, 50, or 100 ranks according to

their respective colors.

(B) Mutation Shapley feature importance for the LR and XGBoost classifiers in NCI-train. The error bars indicate the standard deviation over 10 replicate runs. The

features on the y axis are ordered by decreasing feature importance of both LR and XGBoost.

(C) Neo-peptide feature importance (Figure 3G) compared with mutation feature importance (B) for RNA-seq expression-, binding affinity-, IntOGen-, and

ipMSDB-related features used by both neo-peptides and mutation classifiers.

See also Figure S4.
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However, the applicability of the ‘‘high-quality’’ model is limited

to providing predictions solely for 9-mer peptides and the model

does not consider the important information fromRNA-seq data.

The complex multidimensional structure of the feature manifold

motivated the use of ML techniques, to efficiently combine these

features for the prioritization of neo-peptides or mutations.

Beyond the selection of the descriptive features, we evalu-

ated several data normalization methods and found that they

had a strong impact on the outcome. In addition, we applied

the Hyperopt45 framework to find the optimal classifier hyper-

parameters, a technical step that is important for the overall

performance of ML tools. Several classifier algorithms were

then trained on the large NCI27,28 cohort, which was the least

biased and most comprehensive of the three datasets. We

observed that the LR46 and XGBoost47 classifiers outperformed

the others and that their results were to some extent comple-

mentary, motivating the use of a voting classifier, which com-

bined the LR and XGBoost probabilities and uniformly provided

more robust results. Importantly, the LR and XGBoost classi-

fiers trained on NCI-train resulted in accurate immunogenicity

rankings for neoantigens in the TESLA26 and in-house HiTIDE

datasets, which have different HLA restrictions, originate in

different tumor types, which were obtained from different labo-

ratories and screened with different immunogenicity assays.

Our ML ranking achieved the highest position among the

TESLA participants when considering all three evaluation met-

rics. Additionally, our classifiers surpassed the performance of

the classifier reported by Gartner et al. for the NCI-test data-

set28 in which our approach resulted in a remarkable 30% in-

crease in the number of immunogenic neo-peptides ranked

within the top 20.

In order to assess the significance of features in the classifica-

tion task, we used Shapley values.50,51 For prioritization of muta-

tions, features describing both the mutations (e.g., RNA expres-

sion and ipMSDB) and their neo-peptides (e.g., binding affinity)

had high importance. In contrast, for prioritization of neo-pep-

tides, binding affinity and stability features dominated. Overall,

the performance of HLA binding prediction tools has greatly

improved over the last years, especially due to the availability

of high-scale accurate MS data of eluted HLA peptides and

the implementation of advanced ML approaches. However,

our analysis showed that for some peptides that failed to be

placed in the top ranks, the limiting factor was, to our surprise,

the still suboptimal accuracy of the HLA binding affinity predic-

tion. Nevertheless, we demonstrated that many other features

are positively associated with the ranking. This was particularly

visible when we excluded ipMSDB and IntOGen features from

the features set used for the classification, leading to a decrease

in performance.

Our classifiers perform well for datasets with different immu-

nogenicity validation methods, providing an advantage that al-

lows them to be utilized by diverse groups, irrespective of their

chosen validation methods. Our results will contribute to immu-

nogenicity prediction in two scenarios. First, users can repro-

duce all the features we included in our work and apply our

trained classifiers directly for antigen prioritization on their data

or combine our classifiers with classifiers trained on their own

data. Second, our harmonized datasets can serve as a basis.

The available features can be edited, and additional features

can be included. Users can train and benchmark their own clas-

sifiers and ML methods with these datasets. To conclude,

together with our ML classifiers and ML methods, we provide

easily accessible data for method development and bench-

marking with the aim to improve the selection of immunogenic

neo-peptides and mutations for the development of effective

personalized immunotherapy treatments.

Limitations of the study
Of note, some potential limitations should be considered. The

datasets may contain some false-negative neo-peptides

because only a subset was screened for immunogenicity. It is

equally important to note that the assessment of neoantigen-

specific responses may underestimate their true potential due

to the possibility of T cell exhaustion, which can result in limited

expansion or diminished reactivity during in vitro culture.57 This

situation could be improved by screening more neo-peptides

per mutation or by applying semi-supervised learning methods,

which use a combination of clustering and classification algo-

rithms to correct the labels of some wrongly assigned data

points. In this study we exclusively considered SNV SMs, but it

is known that peptides mapped to insertions, deletions, and

out-of-frame and gene fusion events have a high immunoge-

nicity potential due to their increased dissimilarity to WT HLA-

bound peptides. However, the amount of immunogenicity data

available for non-SNV genomic alterations is limited. To circum-

vent this limitation, one could leverage the predictors built on

SNV mutations and neo-peptides to predict the immunogenicity

for non-SNVmutations too. In addition, HLA loss of heterozygos-

ity and expression silencing frequently occurs in cancers41,58

and such silenced HLA alleles may be excluded from HLA bind-

ing and stability predictions. Furthermore, once enough data for

CD4+ T cell recognition of neo-peptides will be available, predic-

tors for neoantigens bound to HLA-II complexes may apply a

similar approach.7,59–63
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SUMMARY

Intestinal fibrosis, often caused by inflammatory bowel disease, can lead to intestinal stenosis and obstruc-
tion, but there are no approved treatments. Drug discovery has been hindered by the lack of screenable
cellular phenotypes. To address this, we used a scalable image-based morphology assay called Cell Paint-
ing, augmentedwithmachine learning algorithms, to identify small molecules that could reverse the activated
fibrotic phenotype of intestinal myofibroblasts. We then conducted a high-throughput small molecule che-
mogenomics screen of approximately 5,000 compounds with known targets or mechanisms, which have
achieved clinical stage or approval by the FDA. By integrating morphological analyses and AI using patho-
logically relevant cells and disease-relevant stimuli, we identified several compounds and target classes
that are potentially able to treat intestinal fibrosis. This phenotypic screening platform offers significant
improvements over conventional methods for identifying a wide range of drug targets.

INTRODUCTION

Intestinal fibrosis is a pathophysiological mechanism of intestinal

tissue repair that leads to the deposition of desmoplastic con-

nective tissue after injury. This process can be triggered by

noxious agents, including infections, autoimmune reactions,

and physical, chemical, and mechanical injuries. Under normal

physiological conditions, intestinal immune components can

help to clear foreign pathogens and facilitate tissue repair

through canonical wound healing processes. However, fibro-

genesis may occur when the immune response is uncontrolled

and persistent, or when injuries repeat, resulting in chronic

damage.1,2 Intestinal fibrosis is one of themost common compli-

cations of patients who suffer from inflammatory bowel disease

(IBD), occurring in approximately 5% of ulcerative colitis (UC)

patients and more than 30% of Crohn’s disease patients. The

prevalence of IBD increased from 0.5% in 2010 to 0.75% in

2022 in Western countries and is projected to reach 1% in

2030.3,4 Fibrostenotic complications, including stricture forma-

tion and subsequent intestinal obstruction, significantly increase

morbidity and hospitalization, surgical intervention, and health

care costs.1 Despite advances in the development of therapeu-

tics for treating IBD, including small molecular weight immuno-

modulators (prednisone, 5-aminosalicylic acid, tofacitinib, and

ozanimod), DNA/RNA replication inhibitors (azathioprine, metho-

trexate, and 6-mercaptopurine), and largemolecular weight anti-

inflammatory biologics (anti-TNFa, anti-integrins, and anti-IL-12/

IL-23), the high incidence of intestinal strictures and requirement

for surgical interventions remain.5 The lack of effective drug ther-

apies for fibrostenotic IBD represents an increasing and signifi-

cant unmet medical need.

At a molecular basis, intestinal fibrosis in IBD is a dynamic

and multifactorial process. It is a consequence of local chronic

inflammation and subsequent activation of fibroblasts. Mucosal

inflammation occurs when themucosal integrity is compromised

resulting in the influx of micro-organisms from the gut lumen.

Myeloid cells, such as macrophages and dendritic cells, recog-

nize these pathogen-associated molecular patterns via Toll-like

and NOD-like pattern recognition receptors and propagate the

immune signaling by recruiting other immune cells to clear the

offending pathogens by releasing cytokines and chemokines,

such as TNFa, IL-1b, IL-36, and Oncostatin-M (OSM).6 Tissue

repair and wound healing occurs in the resolution of the inflam-

mation process after initial inflammatory responses. However,

in the context of chronic inflammation, cytokines and chemo-

kines drive the differentiation and activation of fibroblasts and

their subsequent production of extracellular matrix (ECM) pro-

teins. When the balance between production and enzymatic

degradation of ECM proteins is lost, intestinal fibrosis occurs.5

TGFb is a key cytokine that is produced in response to inflamma-

tion, and is a well-known driver of fibrogenesis.5,7 Numerous

studies have been carried out to address TGFb-induced
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fibrosis.7–10 However, due to the broad physiological functions,

TGFb inhibition induces undesirable toxicities, which override

its therapeutic benefits.11 In contrast, inflammation-associated

fibroblasts (IAFs), enriched for expression of many genes asso-

ciatedwith colitis and fibrosis, represent another paradigm in ad-

dressing IBD-related fibrosis.12,13

Due to the failure rate of translational efficacy for many clinical

candidates for IBD,14 there is an increased interest in the

exploratory phase of drug discovery, to utilize disease-relevant

phenotypic screening to provide more confidence to identify

drug targets or small molecules.15–17 However, lead molecules

derived from phenotypic screening campaigns may be difficult

to follow up due to intrinsic complexities of generating useful

structure-activity relationships, and lack of structure-based

drug design input, coupled to the difficulties in predicting and

successfully navigating mechanism-associated toxicities. Che-

mogenomic screening utilizes a library of selective small mole-

cules with annotated targets. The benefit of phenotypically

profiling compounds with known targets and mechanisms is to

assist generation of mechanistic hypotheses that can initiate

ensuing target validation studies. Although focused chemoge-

nomics libraries restrict the surveyable mechanistic space, hit

molecules identified from such screens can suggest that their

targets are amenable to functional pharmacological modulation,

thus providing evidence of the druggability of the targets.17

Due to practicality and affordability, drug discovery cam-

paigns typically employ one or a few readily interpretable bio-

markers, such as secretory or intracellular markers or gene-of-

interest-driven reporters that reflect known biology. Recently,

significant interest has arisen in the drug discovery industry to

capture high-dimensional cellular morphological changes to

stimuli and drug treatments by using an image-based profiling

with automated microscopy.18 This unbiased, inexpensive, and

scalable image-based method, most often using the Cell Paint-

ing assay, combines multiple organelle stains in a robust assay

yielding single-cell profiles composed of thousands of fea-

tures.18 Integrated into machine learning and data mining, Cell

Painting offers the potential to accelerate therapeutic discovery

by identifying drug-induced cellular phenotypes, elucidating

modes of action, and characterizing drug toxicities.18

In this study, we describe a chemogenomic library screen in

human intestinal fibroblasts using both disease-relevant bio-

markers and Cell Painting readouts to interrogate targeted small

molecules that can alleviate the fibrotic phenotype. We identified

clinically relevant hits from both assay readouts, though the

mechanisms-of-action of hits from each assay represent distinct

fibrotic biology. We identified inflammatory response regulators

with the biomarker assay, and tissue plasticity, remodeling,

fibrosis, and angiogenesis signaling modulators with the Cell

Painting assay. The hits were further confirmed and validated

in colonic fibroblasts treated with other pro-fibrotic stimuli.

With this integrated approach using both high throughput

biomarker analysis and artificial intelligence-enabled morpho-

logical profiling, we were able to discover a wide spectrum of

physiologically and clinically relevant small molecules and

targets for intestinal fibrosis. Typically, such high-dimensional

datasets require extensive data mining and analysis with trained

informatics experts to dissect the information. Here, this study

serves as a general roadmap to bench scientists without ma-

chine learning skills to identify targets and hits for other complex

and challenging phenotypes and polyetiological disease areas.

RESULTS

Development of an in vitro cellular disease model that
mimics human intestinal fibrosis pathogenic cell
population
The CCD-18co human colon fibroblast cell line was identified as

a physiologically relevant model for human intestinal fibro-

blasts.19 In order to identify culture conditions that yielded the

most clinically relevant response to disease-associated stimuli,

we performed single-cell transcriptomic analysis of CCD-18co

cells that were treated with various pro-fibrotic stimuli, including

TNFa, IL-1b, TGFb, TL1a, OSM, and IL-36, for 16 h. We com-

bined data from each treatment in an integrated UMAP (Fig-

ure 1A) and compared their single-cell RNA sequencing profiles

side-by-side (Figure 1B). We identified seven distinct clusters of

cells in total, of which several common clusters were shared

among all treatments, as well as unique clusters corresponding

to particular treatment groups (Figure 1B).

Within these clusters, we performed functional characterization

by mapping the enriched canonical pathways and upstream

regulators. Clusters 2 and 6 were predominant in TNFa and IL-1b

treatment groups (Figure 1C). Genes upregulated in these clusters

represented IL-17 signaling, wound healing, TREM1 signaling,

cytokine-mediated fibroblast crosstalk, leukocyte migration, and

tumor microenvironment pathways; as well as genes involved in

mediating inflammatory pathways associated with cancer (Fig-

ure 1D). Cluster 3 and cluster 5 were mainly found in TGFb and

OSM treatments, respectively (Figure 1C). Genes upregulated in

cluster 5 represented IL-6 signaling and acute phase response

signaling, while genes upregulated in cluster 3 represented tissue

fibrosis activities (Figure 1D). IL-36 and TL1A treatment profiles

were similar to the control, suggesting neither stimulus exerted a

significant effect on the cells (Figure 1B). Upstream regulator

detection analysis corroborated that the clusters 2 and 6 are

modulated by TNFa and IL-1b, while cluster 3 by TGFb and cluster

5 by OSM.

To identify which CCD-18co population exhibited the most dis-

ease-mimetic gene expression profile, we mapped activated

CCD-18co clusters (clusters 2, 6, 3, and 5) to cell populations

from primary human colon stromal biopsies from healthy and UC

patients12 (Figure 1E). We found that clusters 2 and 6, most prev-

alent in TNFa and IL-1b treatments, and cluster 5, unique to OSM

treatment, had signatures that closely overlapped with those of

IAFs in diseased human colon biopsies. Cluster 3, specific to

TGFb treatment, corresponded to both IAFs and myofibroblasts

in human colon biopsies. Because IAFs are the immunological

hub ofmultiple signaling pathways that play important roles during

the onset of intestinal inflammation and fibrosis,7 and IAFs are

associated with anti-TNFa drug resistance in IBD patients,12 we

sought to address this key unmet medical need for intestinal

fibrosis and perform the primary screen with TNFa as stimulus,

as it was found to induce an IAF phenotype.

To quantify the effects of TNFa signaling on morphological

fibrosis in CCD-18co cells, we knocked out the TNFRSF1A and

TNFRSF1B genes, which encode TNFR1 and TNFR2 (TNFa cell

surface receptors), respectively, individually or together using
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Figure 1. Bioinformatic analysis of transcriptome profile of CCD-18co cells and comparison with human colon biopsies
(A and B) UMAP embedding of 16,750 single-cell RNA sequencing (scRNA-seq) profiles from CCD-18co fibroblast cell cultures with different stimuli, including

TNFa, IL-1b, TGFb, TL1a, OSM, and IL-36, for 16 h. Seven identified single-cell clusters are indicated by colors.

(C) Stacked bar graph showed cluster cell composition, with cluster 3 corresponding to cells activated by TGFb, cluster 5 corresponding to cells stimulated by

OSM, while clusters 2 and 6 captured cellular responses upon TNFa and IL-1b treatments. The remaining clusters were not overrepresented in any of the

conditions and were considered baseline state.

(D) Ingenuity pathway analysis (IPA) canonical pathways associated with the upregulated genes in clusters 2 and 6 (TNFa and IL-1b stimuli), cluster 5 (OSM), and

cluster 3 (TGFb). Cluster 1, not shown in Figure 1D, exhibited high expression of cell cycle phase genes. Grayscale represents p-score = � log10 (p value).

(E) Top 15markers fromCCD-18co fibroblast cell clusters 2, 3, 5, and 6were analyzed in human colon fibroblasts fromUC and healthy patients, retrieved from the

published stromal single cell atlas.12 Highly expressed genes in CCD-18co clusters 2, 5, and 6 (TNFa, OSM, and IL-1b treatments) were enriched in inflammatory

fibroblasts, and highly expressed genes in CCD-18co cluster 3 (TGFb cellular treatment) were elevated in myofibroblasts from colonic biopsies.
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Figure 2. Chemogenomic library screen workflow

(A) The screen was conducted through a process including primary screening, hit confirmation, and orthogonal validation assays. For the primary screen, colonic

fibroblasts CCD-18co cells were plated on day 1, followed by small molecule transfer on day 2, and 10 ng/mL TNFa stimulation on day 3. The supernatant

samples were collected for the CXCL10 reduction assay and cells were stained with the Cell Painting dyes for the high content imaging assay. Hits from both

assays were called and analyzed individually and collectively.

(B) CCD-18co cells that were stained with Cell Painting dyes including Hoechst 33342 (nuclei), Concanavalin A-Alexa 488 (ER), SYTO 14 (nucleic acid), WGA-

Alexa 555 (Golgi), phalloidin-Alexa 568 (cytoskeleton) and MitoTracker Deep Red (mitochondria), and imaged with Operetta CLS. The image on the far left

represents the merged image of all channels.

(legend continued on next page)
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CRISPR/Cas9geneediting (FigureS1A, related toFigures1and2),

then evaluated the response of the cells to TNFa. Upon activation

ofNF-kBbyTNFa signaling,p65,a subunit ofNF-kBalsoknownas

RELA, was observed to translocate from the cytoplasm to the nu-

cleus (FigureS1B, related toFigures1and2).However, cells trans-

fected with individual or pooled TNFRSF1A guide RNAs (gRNAs)

showed that p65 remained, at least partially, in the cytoplasm (Fig-

ure S1C, related to Figures 1 and 2), indicating reduced NF-kB

signaling. Further, CCD-18co cells transfected with individual or

pooled TNFRSF1A gRNAs showed a trend toward diminished

CXCL10 secretion compared to control cells (Figure standard

deviations (S.D.) related to Figures 1 and 2). The effect of dual

TNFRSF1A and TNFRSF1B knockout was similar to TNFRSF1A

knockout alone indicating TNFa signaling was mediated, at least

partially, through TNFR1 instead of TNFR2 in CCD-18co cells.

In high-throughput screening, it is important to use clinically

proximal readouts whenever possible to ensure the observed

phenotype is a robust surrogate for disease pathology. To that

end, we assessed protein and mRNA expression levels of a panel

of inflammation-related biomarkers in CCD-18co cells that were

treated with disease-relevant pro-fibrotic stimuli. We identified

CXCL10 as a significantly upregulated biomarker at both protein

and mRNA levels by multiple stimuli, including TNFa, IL-1b, and

IL-36 (FigureS2, related toFigure2). BecauseCXCL10contributes

to fibrosis by supporting monocyte/macrophage recruitment,

angiogenesis, fibroblast collagen synthesis, myofibroblast activa-

tionanddifferentiation, andmodulationofCXCL10and its receptor

CXCR3 has been reported to be associated with inflammatory

signaling-driven fibrogenesis,20–24 we chose it as a readout for

efficacy in theensuingscreen. Thoughwedidprofilemoreconven-

tional biomarkers of fibrosis, including ACTA2 and COL1A1,

neither was induced by pro-fibrotic stimuli at either protein or

mRNA level to yield an acceptable assay window for a high

throughput screen (Figure S3, related to Figure 2). This is likely

due to the fact that they are biomarkers of canonical TGFb

signaling instead of other pro-inflammatory stimuli (e.g., TNFa,

IL-1b, and IL-36).

In addition to CXCL10 secretion as a readout for efficacy, we

also used the Cell Painting assay to serve as a morphological

readout of cellular fibrosis. Morphologies of CCD-18co cells

treated with different pro-fibrotic stimuli were visually distinct

(Figure S4A, related to Figure 2) and this translated to cellular

features that yielded equally distinct principal component anal-

ysis (PCA) plots (Figure S4B, related to Figure 2). Interestingly,

the Cell Painting PCA plot strongly resembled the transcriptomic

PCA plot (Figure S4C, related to Figures 1 and 2), suggesting

CCD-18co cellular morphology might be tightly correlated with

gene expression and subsequent biological activities.

Automated high throughput chemogenomic library
screen to identify targeted perturbagens of intestinal
fibrosis
To comprehensively profile diverse biological and functional

space (Figure 2A), we sourced two small molecule libraries

totaling 4,871 compounds annotated with either their reported

targets and/or mechanisms of action and have been either

tested in clinical trials or approved by the FDA (Selleckchem; Fig-

ure S5A, related to Figure 2). The molecular weight and ALogP of

these compounds were within the standard range for ‘‘drug-like’’

molecules (Figure S5B, related to Figure 2).25

For the primary high throughput screening assay, 1,200

CCD-18co cells/well were plated on the first day, followed by

compounds and controls after 24 h (Figure S5C, related to Fig-

ure 2). Each compoundwas tested at 3 mM in biological triplicate.

1 ng/mL anti-TNFa antibody adalimumab was used as the

positive control, because adalimumab was able to effectively

suppress TNFa signaling in the CXCL10 assay (as well as in

the Cell Painting assay, as discussed later, Figure S.D. related

to Figures 2 and 3). Cells were then treated with 10 ng/mL

TNFa on the third day for 48 h, after which time the cell culture

supernatants were collected for CXCL10 protein quantitation

using a homogeneous time-resolved fluorescence (HTRF) assay.

For the Cell Painting assay, cells from the exact same samples

were stainedwithCell Painting dyes followed by high-content im-

age acquisition and analysis. The assay includes six fluorescent

dyes tohighlight different organelles ofCCD-18cocells, including

MitoTracker Deep Red FM for mitochondria, Concanavalin

A-Alexa 488 for endoplasmic reticulum, SYTO 14 for nucleoli

and cytoplasmic RNA, WGA-Alexa 555 and phalloidin-Alexa

568 for F-actin cytoskeleton, Golgi, and plasma membrane,

Hoechst 33342 for nucleus26 (Figure 2B). High-content images

were captured and cellular morphological features were ex-

tracted and then analyzed using a dimensionality reduction

method. Compounds that clustered around the positive controls

were categorized asCell Painting hits (Figure 2C). For dimension-

ality reduction, we used either a supervised PCA or a linear pre-

dictivemodel. For bothmethods, themediansof positive controls

and negative controls were normalized to 0 and 1, respectively.

Compounds were then binned into positive or negative bins de-

pending on the projection scores (STAR Methods, Figure 3A,

left). Compounds positive for >2 out of 3 replicates in the positive

bins and projection scores within the range of Average(pos ctrl) ±

3 x S.D. were picked as preliminary hits. Compounds exhibiting

cytotoxic profiles were then further filtered based on cell count.

In total, 160 and 152 compounds were picked as hits from

supervised PCA and linear predictive models of the Cell

Painting data, respectively (Figure 3A, right). There were 100

hits that overlapped between both models for Cell Painting anal-

ysis (Figure 3A, right), suggesting the two analytical methods

yielded mainly convergent results. In addition, we assessed

three other metrics for picking Cell Painting hits; namely using

the top 50 features, top 5 features, or top 3 features per channel

that separate positive and negative controls, though the hits and

targets that were identified were mostly similar (Figure S6,

related to Figure 4). To determine whether these cellular features

correlate with their biological functions, we projected the cellular

features of the targets that were most distinct from the negative

controls onto a two-dimensional t-SNE map (Figure 3B). This

(C) Workflow of cellular compartment segmentation of high content images using PerkinElmer Harmony software. Nuclei were identified by Hoechst 33342 stain.

Cytoplasmwas then identified byConcanavalin A-Alexa 488 stain. The border objects were excluded from analysis. Differentmorphology and intensity properties

of each channel were calculated and 860 features were extracted at the well-level. The profiling dataset was then analyzed with a dimensionality reduction

method, such as PCA.

ll
Resource

Cell Chemical Biology 30, 1169–1182, September 21, 2023 1173



map showed that some co-annotated compounds form

coherent clusters (e.g., MEK and HSP) in phenotypic space

whereas others do not (e.g., Bcl-2, FAK, CRM1, and DNA-PK).

For the CXCL10 assay, luminescence intensities of positive

and negative controls of each plate were fit on a 0 to 1 scale and

were then normalized for their percent inhibition, with the mean

of positive control being 100% and the mean of negative control

being 0% (Figure 3C). The strictly standardized mean difference

(SSMD) was used to measure the effect size and gauge the assay

quality.27 Plates with SSMD>1.28 (the SSMD quality cutoff) then

proceeded to hit selection. Compounds positive for >2 out of 3

replicates with CXCL10 inhibition >70%were identified as prelim-

inary hits, and then filtered by eliminating cytotoxic compounds

(dependent on cell count). After applying this gating strategy,

109 compounds were identified, resulting in a 2.2% hit rate for

the CXCL10 screen (Figure 3D).

Figure 3. Primary screen hit picking strategies for the CXCL10 reduction assay and Cell Painting assay

(A) The Cell Painting dataset was analyzed with both supervised PCA and linear predictive model methods. Projection scores of Cell Painting controls and

samples help to determine the similarities between compounds and controls. Compounds in positive bins in the range between Average(projection score) ± 3 x

S.D. were picked as hits.

(B) t-SNE plot shows the phenotypic space of top compound target categories that are farthest from the negative controls.

(C) Pos and neg ctrl data points of CXCL10 HTRF assay. X axis shows the plate barcode, y axis shows the normalized CXCL10 level. Solid yellow line shows 0%

inhibition representing themedian of the neg ctrl (vehicle), and solid red line shows 100% inhibition representing themedian of pos ctrl (1 nM adalimumab). Dotted

orange line shows 70% cutoff for hit picking.

(D) The CXCL10 HTRF assay screening funnel.

(E) Overview of small molecule hit numbers from each assay/analysis.
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Surprisingly, there were only 8 hits that overlapped between

the Cell Painting linear predictive model and the CXCL10 assay,

and only 9 hits that overlapped between the Cell Painting super-

vised PCAmodel and the CXCL10 assay. Only 5 hits overlapped

among all three methods. In the end, after removing duplicate

compounds, 275 unique hits from either Cell Painting or

CXCL10 assay were advanced for further confirmation and vali-

dation (Figure 3E).

Target discovery through the integration of cytokine
biomarker and morphological profiles
It was intriguing that the CXCL10 assay and the Cell Painting

assay identified vastly different pools of hit compounds. For hit

compounds that were unique to Cell Painting, the top targets

included VEGFR, HSP, c-Met and PDGFR, MEK, c-Kit, FLT3,

and FGFR (Figure 4A); while hits that were unique to the

CXCL10 assay included the targets mTOR, PI3K, glucocorticoid

receptor, and several components of the autophagy and micro-

tubule pathways (Figure 4B). For hits that were shared between

the two assays, the top targets included PI3K, autophagy, and

Janus kinase (JAK) (Figure 4C).

In several contexts, image-based profiles have proven to

show predictive abilities for other assays.28 We wondered

whether any particular cellular morphology features from the

Cell Painting assay could be used to predict CCD-18co cells’

response to TNFa, in terms of secreting CXCL10. We studied

the statistical dependence between CXCL10 levels and each

of the 860 individual cellular features. Overall, 752 out of 860 fea-

tures had some linear relationship with the CXCL10 level (F-test,

p < 0.01, Bonferroni-corrected with a = 0.01). In particular, we

found that a few categories of cellular features including axial

small length (the length of the cell’s shorter axis in pixel units)

and Radial Mean (the mean object radius based on the intensity

values weighted by the distance from the mass center) from the

ER, mitochondria and F-actin, Golgi and PM channels (n = 54

features) had strong relationships with CXCL10, as indicated

by higher average F statistic values (97th percentile of distribution

of F statistic, all adjusted p values = 0.0), which capture the linear

dependency between features and the CXCL10 (Figure 5A), We

further confirmed this finding by also calculating averaged

mutual information (MI), which is a nonparametric measure that

can capture any kind of statistical dependency, and demon-

strated that these feature categories have strongest relation-

ships with the CXCL10 level (98th percentile of distribution of

MI values) (Figure 5B). To focus on the subcategories and

examine which particular features had the strongest statistical

dependency with CXCL10 level, we found that several

Radial Mean features including Edge, Ridge, and Spot of the

A B

C

Figure 4. Hit category analysis of Cell Painting and CXCL10 reduction assays
(A) Hit number of target categories for linear predictive model and supervised PCA analysis of Cell Painting. Bar chart shows the target categories with R5

compounds in each.

(B) Hit number of target categories for CXCL10 reduction assay. Bar chart shows the target categories with R5 compounds in each.

(C) Hit number of target categories for the overlapping hits between CXCL10 reduction assay and Cell Painting assays. Table shows target categories with R3

compounds in each assay.
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Spots, Edges and Ridges (SER) texture analysis in the F-actin,

Golgi, and plasmamembrane channel have nearly perfect statis-

tical dependency with the CXCL10 level (e.g., Radial Mean SER-

Spot has F-statistic of 1.0 and Radial Mean SER-Edge has MI of

1.0) (Figure 5C); indicating these features have strong depen-

dency with CXCL10 and can be considered as potential predic-

tors of CXCL10 level.

Target validation using pro-fibrotic stimuli-treated cell
models
To further characterize hit compounds according to their ability

to ameliorate fibrosis from pro-fibrotic stimuli other than TNFa,

we profiled the 275 unique hit compounds at three doses

(3 mM, 0.6 mM, and 0.125 mM) in assays with different stimuli

(IL-1b, IL-36, or OSM) in addition to TNFa (Figure 6A). The

CXCL10 assay was used for TNFa-, IL-1b-, and IL-36-treated

cells, while a CCL2 assay conducted 2 h post-OSM treatment

was used for OSM-treated cells, because CCL2 (Figure S.D.

related to Figure 6) but not CXCL10 (Figure S.D. related to Fig-

ure 6) is a functional biomarker for OSM stimulation. Similar to

CXCL10, CCL2 contributes to fibrosis by recruiting monocyte/

macrophage and myofibroblast activation and differentiation.23

The Cell Painting assay was only used for TNFa and IL-1b stim-

ulation, as there were no viable assay windows for cells treated

with either IL-36 or OSM (Figure S4B, related to Figure 6), leaving

four cytokine assay and two Cell Painting assay results available

for analysis.

The TNFa-stimulated reconfirmation screen of 275 unique hit

compounds yielded a 51% reconfirmation rate for reducing

CXCL10 expression/secretion and a 47% reconfirmation rate

for Cell Painting, suggesting the robustness of the primary

screening assays (confirmed and validated hit results are shown

in Table S1, and details of example hits are shown in Figure S7,

related to Figure 6). Using a combinatory approach to examine

the target categories, we pooled the four cytokine stimulation re-

sults and identified glucocorticoid receptor as the top target with

16 hits. This was followed by autophagy, inflammatory-related

mechanisms, JAK, PDGFR, and SYK (Figure 6B). The two Cell

Painting reconfirmation assays (TNFa and IL-1b) similarly

showed glucocorticoid receptor to be the top target, followed

by MEK, PDGFR, VEGFR, and inflammatory-related mecha-

nisms (Figure 6C).

When considering all six compound lists, the hits were binned

into three buckets depending on the number of assays in which

they were identified as hits. Bucket one included compounds

that were picked as hits in six out of six assays. All hits in this

bucket were glucocorticoid receptor modulators (steroids).

Bucket two included compounds that were picked as hits in

five out of six assays and similarly, all hits in bucket two were

mainly glucocorticoid receptor modulators. Bucket three

included compounds that were identified as hits in three or

four out of six assays and this bucket represented the largest

variety of biological functions with different mechanisms of

action (Figure 6D).

To understand these targets in the context of signaling path-

ways, we mined the literature and identified any associations

between targets in bucket three and intestinal fibrosis. Overall,

three main pathways were identified: ER stress response,

Figure 5. Correlation analysis of morphological features with CXCL10 level

(A and B) F statistic (which shows the linear dependency) and mutual information (which shows any type of dependency, including linear dependency) between

cellular feature subcategories and the CXCL10 level. Error bars show a bootstrap-estimated 95% confidence interval.

(C) Heatmap of top highly correlated features of each subcategory with CXCL10.
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fibrosis/angiogenesis, and inflammation (Figure 7). All three path-

ways were shown to play a role in tissue fibrosis.7,9,29–31,63–66

Interestingly, we identified and confirmed both nintedanib (tar-

gets PDGFR, VEGFR, and FGFR) and pirfenidone (targets NF-

kB), approved drugs for treating idiopathic pulmonary fibrosis

(IPF),32,66 as potent antagonists of myofibroblast activation67

(Figure 7). These data suggest that the small molecules, targets,

and signaling pathways identified through our multi-parametric

biomarker and cellular feature profiling approach were physio-

logically and clinically relevant. Further, this screening platform

was able to identify molecules from a wide spectrum of mecha-

nisms of action.

DISCUSSION

IBD-associated intestinal fibrosis represents a highly invasive

and deleterious disease that currently has no approved pharma-

cological intervention. In order to address this, we developed a

clinically relevant humanized intestinal fibrosis model composed

of TNFa-activated colon fibroblasts. In order to leverage large

collections of small molecules for therapeutic profiling efforts,

we miniaturized the human IBD fibrosis model to accommodate

a scalable phenotypic screening platform for fully automated

drug discovery. Employing transcriptomics as a surrogate

characteristic for comparing our CCD-18co in vitro model to

IBD patient biopsies, we identified several distinct transcriptional

clusters corresponding to different pro-inflammatory cytokine

stimuli. Although TGFb treatment of CCD-18co cells produced

a canonical gene expression profile that overlapped with myofi-

broblast components of patient biopsies, discovery of therapeu-

tics targeting the TGFb pathway has not yielded any clinical

treatment due to undesirable toxicities. In recent years, IAFs

have been shown to be critical to fibrogenesis associated with

chronic inflammatory diseases.12,13,22 Here, we intended to

identify potential therapeutics by targeting IAFs.

As intestinal fibrosis is a result of a complex interplay of im-

mune-mediated inflammatory processes as well as modulation

of pro-inflammatory cytokine-mediated signaling pathways,

A

B

C

D

Figure 6. Hit confirmation and validation assay workflow and hit categories

(A) Hit confirmation and validation experimental workflow.

(B) Top target categories across the four cytokine reduction assays. Table shows target categories with R3 compounds for each assay.

(C) Top target categories for the Cell Painting results of TNFa and IL-1b stimulation.

(D) Top target categories for all six assay results. The results were further bucketed into three categories. Bucket 1 includes compounds that showed effects in all

6 assays. Bucket 2 includes compounds that showed effects in 5 out of 6 assays. Bucket 3 includes compounds that showed effects in 3 or 4 out of 6 assays.

Table only shows target categories with R3 compounds in each.29–62
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our screening platform required a sophisticated series of assay

readouts to account for these polyetiological causes. We first

chose to use CXCL10 (IP10) as the primary screen readout due

to its well-characterized association with intestinal fibrotic pa-

thology and because compared to other biomarkers, both its

mRNA and protein levels were significantly increased bymultiple

pro-fibrotic stimuli (Figure S2, related to Figure 2). However, to

fully assess changes in the fibrotic morphological phenotype,

we applied an unbiased image-based profiling technique called

Cell Painting. Although Cell Painting has not been widely adapt-

ed in the drug discovery industry as a phenotypic readout for ef-

ficacy, its scalable ease of use as well as its ability to quantitate

changes in thousands of cellular features makes it an ideal

method for studying complex biology such as intestinal fibrosis.

Cell Painting produces vast morphological information as a

collection of extracted cellular features, but by integrating artifi-

cial intelligence analytical methods, such as machine learning,

we can mine these data to reveal important biological activities

of potentially therapeutic small molecules.18 For example, we

found that the relative positions of pro-fibrotic stimuli-treated

clusters to vehicle controls in Cell Painting PCA plots were

similar to those from RNA-seq PCA plots, suggesting transcrip-

tome profiles and related biological activities strongly correlate

with cellular morphological profiles. We also examined whether

any specific cellular features were highly correlated with

CXCL10 level, because these features may potentially be used

as sentinel readouts for CXCL10 in future studies. We identified

several subcategories of features, such as Axial Small Length

and Radial Mean in ER, mitochondria and F-actin, Golgi and

plasma membrane channels that had high correlations with

CXCL10 level (Figure 5).

Surprisingly, we observed divergent hit distribution profiles

between the CXCL10 and Cell Painting assay readouts. The

reason might be attributed to the fact that only a few cellular

features from the Cell Painting assay had a strong statistical

correlation to the CXCL10 level (Figure 5). Different cellular fea-

tures were chosen that better represented the TNFa-stimulated

phenotype though they had a lower correlative relationship with

CXCL10. These features were chosen for Cell Painting hit

selection because they were more prominent in differentiating

TNFa-treated and non-treated cells. While the CXCL10 readout

identified well-characterized regulators of fibrosis such as

mTOR and glucocorticoid receptor, the targets identified

through the Cell Painting readout were mechanistically more

diverse (e.g., VEGFR, PDGFR, FGFR, c-Met, c-Kit, and MEK)

and included such cellular processes as fibrosis, tissue plasticity

and remodeling, and angiogenesis. In short, the CXCL10 assay

conferred a confidence metric to the biological relevance of

our assay platform by identifying several steroid molecules as

alleviators of the fibrotic phenotype. However, the Cell Painting

assay was able to reveal a diverse array of potential mediators

implicated in intestinal fibrosis pathology, expanding the scope

of actionable targets. Overall, this high-throughput screening

platform combining CXCL10 and Cell Painting readouts was

able to identify small molecule hits with proven clinical relevance.

For example, our screen identified and confirmed nintedanib, a

Figure 7. Major pathways of the bucket 3 compound targets

Three major pathways, including ER stress response, fibrosis/angiogenesis pathway, and inflammatory pathway were identified by analyzing the targets of

bucket 3 compounds. Pink bubbles show the targets that were identified in the bucket 3 compounds. Gray bubbles show other intermediate targets in the

pathway. Nintedanib, a marketed drug for idiopathic pulmonary fibrosis, was identified as a hit in the screen. The screen also identified inflammatory pathway

targets through which pirfenidone, another marketed drug for idiopathic pulmonary fibrosis, exerts its effect.
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drug for treating IPF, may be repurposed to treat intestinal

fibrosis. We also identified small molecules that modulate other

known fibrosis targets (Figure 6). This suggests the screening

platformmay be used for repurposing approved or clinical-stage

drugs or discovering novel small molecules for intestinal fibrosis.

As our collective understanding of the causes andmediators of

disease biology increase, so must our ability to interrogate those

causes to discover the next generation of small molecule thera-

peutics. A complex image-based profiling technique like Cell

Painting integrated with state-of-the-art machine learning algo-

rithms to translate thousands of cellular features into disease-

relevant targets andpathwaysmay represent agiant leap forward

in industrialized drug discovery. Although it may be unlikely that

image-based profiling will completely replace conventional

biochemical, transcriptional, or proteomic profiling methods,

when incorporated into exploratory phases of the drug discovery

pipeline, Cell Painting may accelerate the identification of novel

therapeutics and expand the targeting space of polyetiological

and poorly understood diseases like intestinal fibrosis.

Limitations of the study
In this study, we utilized CXCL10 and CCL2 as functional

readouts for CCD-18co cells due to their robust response to

pro-fibrotic stimuli, resulting in an up-regulation of mRNA and

protein expression levels (Figure S2B, related to Figure 2). The

evidence suggests that CXCL10 and CCL2 play a role in fibrosis

by supporting monocyte/macrophage inflammatory response,

angiogenesis, fibroblast collagen synthesis, myofibroblast dif-

ferentiation, and fibroblast recruitment and survival.23,24 Howev-

er, it should be noted that the role of CCL2 in fibrosis is

somewhat controversial, as there have been reports of CCL2

mediating anti-fibrotic effects in human fibroblasts indepen-

dently of CCR2.68 Because of the complexity of intestinal fibrosis

and translatability and feasibility of using other validated bio-

markers in the cellular screening system, we selected CXCL10

and CCL2 as functional readouts in our screen.

SIGNIFICANCE

Our study showed that the integration of Cell Painting

morphological profiling with biomarker analysis can be used

to identify potential targets and small molecule drugs for a

broad spectrumof polyetiological and poorly understood dis-

eases, suchas intestinal fibrosis.Here,weprovide a roadmap

forbenchscientistswithoutsophisticated informatics toolsor

machine learningskills toanalyzehighdimensionalCellPaint-

ingdatasetsand incorporate image-basedprofiling intoan in-

dustrial phenotypic high throughput screening campaign.
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