RANDOX

RANDOX INTERNATIONAL QUALITY ASSESSMENT SCHEME

RIQAS

RIQAS

THE LARGEST INTERNATIONAL EQA SCHEME WITH OVER 75,000 LAB PARTICIPANTS

LT033 RIQAS Explained FEB24.indd 2 25/04/2024 09:28

01	BENEFITS
02	EQA
03	RIQAS REPORTS
04	WEB-BASED DATA TRANSFER
05	PARTICIPATION IN RIQAS
06	STANDARD REPORT
14	END-OF-CYCLE REPORT
20	MULTI-INSTRUMENT REPORT
21	URINE TOXICOLOGY REPORT
24	URINALYSIS REPORT
25	SEROLOGY REPORT
28	SERUM INDICES REPORT
33	BACTERIAL IDENTIFICATION REPORT
39	MONITORING EQA PERFORMANCE
42	RIQAS PROGRAMMES
47	PARAMETER INDEX
59	RANDOX QC PORTFOLIO
60	CONTACT US

Whilst every attempt is made to ensure that information is accurate and up-to-date, some information is subject to change.

Please contact marketing@randox.com for current details.

LT033 RIQAS Explained FEB24.indd 3 25/04/2024 09:28

BENEFITS

Delivering a comprehensive yet cost effective EQA solution, RIQAS will help meet regulatory requirements and increase confidence in test system accuracy.

Large Database of Users

• A high level of participation means peer group numbers are maximised whilst ensuring availability of data for a wide range of instruments and methods.

User-friendly Reports

- Simple, one page per parameter format, enables at-a-glance performance assessment, saving valuable laboratory time.
- Complimentary multi-instrument and interlaboratory reports allow comparative performance assessment of all laboratory systems and multiple connected laboratories.
- End-of-Cycle reports, summarising performance compared to the previous cycle, allows you to identify improvements in quality over time.

Cost Effective

- Our extensive range of multi-analyte programmes will reduce the number of individual programmes required to cover your test menu, saving both time and money.
- Reduced parameter options for selected programmes offer greater flexibility, ensuring suitability for laboratories of all sizes and budgets.
- Register up to five instruments per programme (volume permitting) at no extra cost for comparative performance assessment.

Frequency

- Frequent reporting allows early identification of system errors and implementation of any necessary corrective actions with minimum disruption to the lab.
- With a turnaround of less than 72 hours for most reports, corrective action can be implemented earlier, potentially reducing costly errors with patient results.

High Quality Samples

- Samples spanning clinically relevant levels allow identification of concentration related biases, helping to ensure accurate instrument performance.
- Human samples free from interfering preservatives increase confidence that EQA performance mirrors the performance of patient samples.
- Reference method values are provided in the Clinical Chemistry programme for selected parameters and lots, while for the Immunosuppressant programme they are provided for all parameters and lots.

Highly Accredited

- Programmes accepted by National and International accreditation bodies worldwide.
- Participant certificates provide evidence of participation in a reputable EQA scheme.

RIQAS is the largest international EQA scheme in the world. It is used by more than 75,000 laboratory participants in 136 countries. 36 programmes are currently available.

RIQAS Programmes

- Ammonia/Ethanol
- Anti-Müllerian Hormone (AMH)
- Anti-TSH Receptor
- Blood Gas
- BNP
- Cardiac
- Cardiac Plus
- Cerebrospinal Fluid (CSF)
- Clinical Chemistry
- Coagulation
- CO-Oximetry
- CYFRA 21-1

- Cytokines
- ESR
- Glycated Haemoglobin (HbA1c)
- Haematology
- Human Urine
- Immunoassay
- Immunoassay Speciality 1
- Immunoassay Speciality 2
- Immunosuppressant Drugs
- Lipids
- Maternal Screening
- Microbiology (Bacterial Identification)

- Neonatal Bilirubin
- Serology (Anti-SARS-CoV-2)
- Serology Epstein Barr Virus (EBV)
- Serology (HIV/Hepatitis)
- Serology (Syphilis)
- Serology (ToRCH)
- Serum Indices
- Specific Proteins
- Sweat Testing
- Therapeutic Drugs
- Urinalysis
- Urine Toxicology

Accreditation

- RIQAS provides certificates as proof of EQA participation and performance for laboratory accreditation purposes.
- RIQAS is a UKAS accredited Proficiency Testing Provider, No. 0010, and is accredited to ISO/IEC 17043:2010, 'Conformity Assessment- General Requirements for Proficiency Testing'.
- Accreditation to ISO/IEC 17043:2010 highlights the superior quality and excellence of RIQAS.

UK Performance Surveillance

- Recognised by the Quality Assurance in Pathology Committee (QAPC).
- Recognised by various National Quality Assurance Advisory Panels (NQAAP).

Independent Advisory Panel

RIQAS participants have access to an independent advisory panel consisting of scientific and clinical experts. This ensures professional and ethical conduct of the scheme and participant confidentiality.

RIQAS support staff are on hand to offer advice and troubleshoot technical queries.

RIQAS REPORTS

RIQAS reports are presented in a user-friendly, one page per parameter format. This allows easy interpretation of your analytical performance.

RIQAS Reports

- Statistical breakdown by all methods, your method and, where applicable, your instrument, including running means for the last 10 samples.
- Compare your instrument group, method group and all methods using the histogram.
- Identify trends, biases and precision problems using the visual charts.
- The Target Score chart uniquely grades your performance in a moving window over the last 20 samples, including the previous cycle.
- At-a-glance summary page for all parameters in the programme.
- Compare your result with statistically robust consensus means.
- Identify acceptable and poor performance using fit-for-purpose performance indicators:
 - SDI
 - %Deviation
 - Target Score

Summary CSV Files

It is possible to receive an additional summary of your report statistics, acceptable limits and performance indicators as a .csv file for every sample (available for quantitative reports only).

Multi-Instrument Reports

Laboratories can register up to five instruments at no extra cost. Individual reports for each instrument plus a unique multi-instrument report are provided. The multi-instrument report plots the performance of each individual instrument on a single, colour coded Levey-Jennings chart, ensuring instant identification of any differences in instrument performance. Additional sample packs may be ordered as required if volume supplied is insufficient for the registered instruments.

Laboratory Group Reports

The group reporting facility enables laboratory groups or chains to monitor the performance of satellite sites. Each affiliated laboratory will receive their individual reports with the group supervisor also receiving a summary report comparing each laboratory in the network.

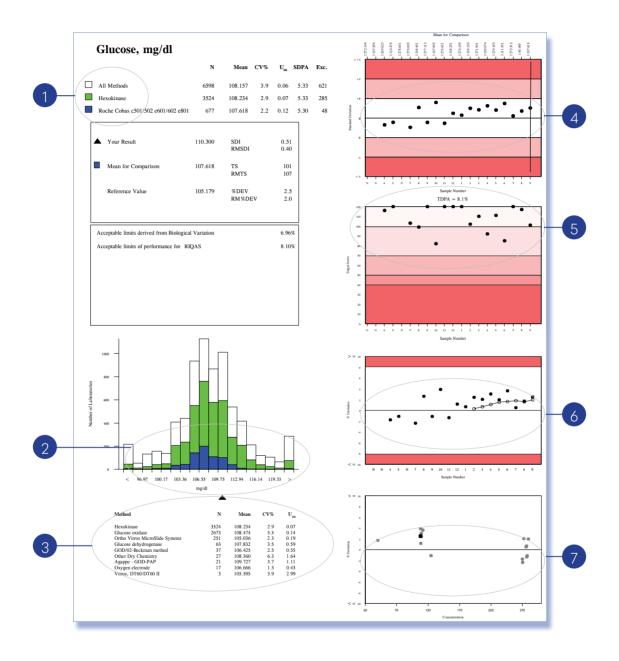
WEB-BASED DATA TRANSFER

RIQAS.Net offers easy, direct access for the submission of results and retrieval of reports direct from the RIQAS host server.

- Available in multiple languages.
- Confidentiality and security is maintained through the use of password protected access.
- Submit current, corrected and future results (normal policies apply), directly into the RIQAS database. Receipt of results is confirmed by e-mail.
- Multi-lingual registration identifier provides simple identification of multiple registrations.
- Additions and changes to assay details can be made quickly and easily online.
- Requests for new method, instrument and reagent codes can be made online.
- Reports are emailed in PDF format as soon as they are prepared.
- Reports for the previous two cycles can be downloaded from the website.
- View, print, store or distribute reports as you wish.
- Update your laboratory's certificate of participation details in multiple languages.
- All that is required is web access, Adobe Reader (for viewing reports) and a valid password to access the system.
- No additional software required.

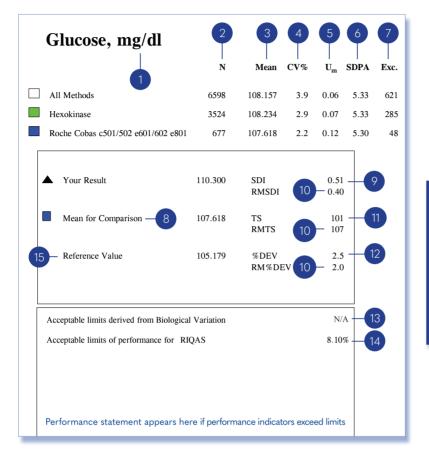
LT033 RIQAS Explained FEB24.indd 4 25/04/2024 09:28

PARTICIPATION IN RIQAS


Participation in RIQAS follows these simple steps:

LT033 RIQAS Explained FEB24.indd 5 25/04/2024 09:28

STANDARD REPORT


Performance data is presented in a one page format with up to seven sub-reports.

Text Section Chart:	Statistics for all methods, your method and instrument group (programme specific).
Histogram Chart:	Method and instrument comparison.
Multi-Method Stat Section Chart:	Enables assessment of the performance of each method.
Levey-Jennings Chart:	Details features of your laboratory's performance.
Target Score Chart:	This unique chart provides a numerical index of performance, allowing at-a-glance assessment.
%Deviation by Sample Chart:	Helps to identify trends and shifts in performance.
%Deviation by Concentration Chart:	Rapid assessment of concentration related biases.

TEXT SECTION

The text section summarises the statistical information for each parameter.

RIQAS performance indicators include SDI, Target Score and %Deviation.

Acceptable performance criteria:

SDI < 2
Target score ≥ 50
%Deviation ≤ defined acceptable limits

- Report is presented in your chosen unit.
- Number of returned results used to generate Mean for Comparison.
- 3 Average value of all laboratories' results.
- Coefficient of Variation.
- Uncertainty associated with the Mean for Comparison.

$$U_{m} = 1.25 \times SD$$

6 SDPA = Standard Deviation for Performance Assessment, calculated from the Target Deviation for Performance Assessment (TDPA) and the Mean for Comparison.

t-value = factor which represents the % of poor performers reflected in the TDPA (t-value \sim 1.645 when $\sim\!10\%$ laboratories achieve poor performance), SDPA is combined with $\rm U_{m'}$ where appropriate.

If $U_m > (0.3 \times SDPA)$ then $SDPA_{adjusted} = \sqrt{(U_m^2 + SDPA^2)}$ and the reported value is suffixed with "a"

If U_m is less than ($0.3 \times SDPA$) then $SDPA_{adjusted} = SDPA$

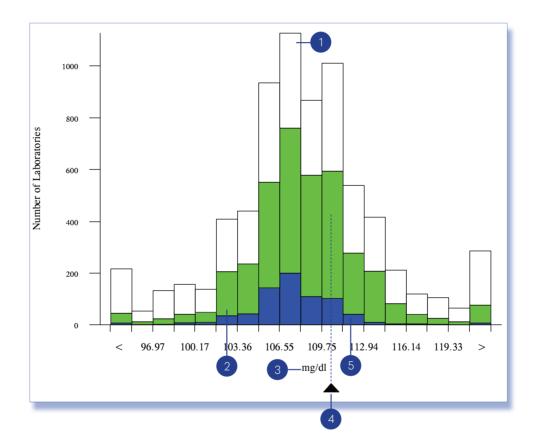
- After statistical reduction, some results are excluded from the mean for comparison.
- 8 Ideally this will be your instrument group mean. If N<5 for instrument group, your method group mean is selected as Mean for Comparison.
- Standard Deviation Index = Your Result Mean for Comparison

 SDPA
- Running Mean average of the last 10 performance indicators is used to monitor performance over time and concentration range.
- Target Score The closer a value is to 120, the better the performance.

$$TS = \log_{10} \left(\frac{3.16 \times TDPA}{| \%Dev |} \right) \times 100$$

12 %Deviation from the Mean for Comparison -

$$\text{\%Dev} = \frac{\text{Your Result - Mean for Comparison}}{\text{Mean for Comparison}} \times 100$$


The closer the value is to zero, the better the performance.

- Biological Variation Not currently available please review online.
- Performance limit set for this parameter.
 - Reference values quoted for information purposes, where applicable.

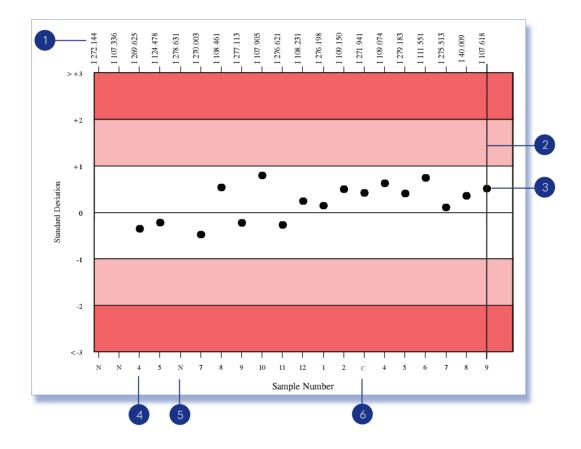
HISTOGRAM

The Bar Graph is intended as a quick visualisation of how your lab's result compares to the method mean, instrument mean and all method mean.

- 200 laboratories reported values between 101.77 & 103.36 in your method group.
- 3 RIQAS reports show your unit of measurement.

4 Your result is indicated by the black triangle.

41 laboratories reported values between 111.35 & 112.94 in your instrument group.


MULTI-METHOD STAT SECTION

This section provides an easy way of assessing the performance of other methods used to analyse the parameter in question.

Method	N	Mean	CV%	Um
Hexokinase	3524	108.234	2.9	0.07
Glucose oxidase	2673	108.474	5.5	0.14
Ortho Vitros MicroSlide Systems	251	105.036	2.3	0.19
Glucose dehydrogenase	63	107.832	3.5	0.59
GOD/02-Beckman method	37	106.425	2.5	0.55
Other Dry Chemistry	27	108.360	6.3	1.64
Agappe - GOD-PAP	21	109.727	3.7	1.11
Oxygen electrode	17	106.666	1.3	0.43
Vitros, DT60/DT60 II	3	105.595	3.9	2.99

LEVEY-JENNINGS CHART

SDIs reflect laboratory performance in relation to fit-for-purpose SDPAs and are useful to monitor performance over time. Acceptable performance is SDI < 2.

The Mean for Comparison for each sample is indicated at the top of the chart. This allows easy assessment of concentration related bias:

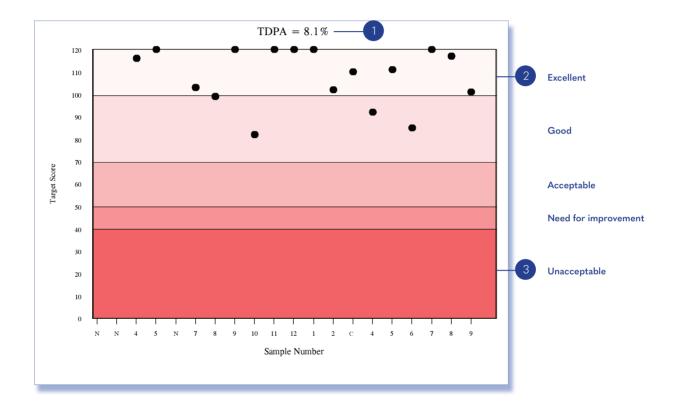
I: Instrument mean M: Method mean A: All method mean

This line indicates a change in registration details for this

Your SDI (Standard Deviation Index).

Sample number.

N = No result returned in time for this registration\sample.

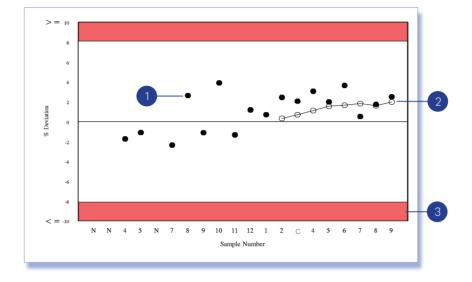

C = Corrected results will be accepted for non-analytical errors. Corrected results will be accepted up to 4 weeks after the final submission deadline, on application, with evidence of analysis. Late results are only accepted if there has been a Randox error.

R = Incorrect results can be removed retrospectively on request.

LT033 RIQAS Explained FEB24.indd 10 25/04/2024 09:28

TARGET SCORE CHART

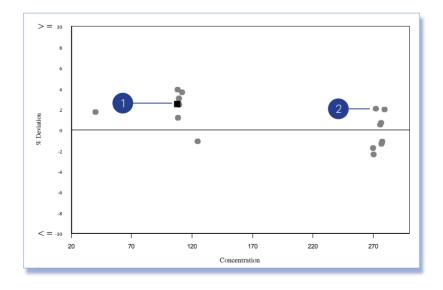
The Target Score (TS) allows you to assess your performance at a glance. The TS relates the %Deviation of your result from the Mean to a Target Deviation for Performance Assessment (TDPA). TDPAs are set to encourage participants to achieve and maintain acceptable performance. TDPAs are fit-for-purpose performance criteria which are set taking guidance from ISO/IEC17043, ISO13528 and IUPAC. Target Deviations for Performance Assessment are also used to calculate the Standard Deviation for Performance Assessment (SDPA).



- 2 High scores ≥50 in the lighter shaded area represent acceptable, good or excellent performance.
- Heavy shading for values 10 to 50 signifies poor performance.

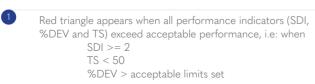
This is the upper deviation limit of performance for this parameter. TDPAs are reviewed regularly and deemed fit for purpose by the RIQAS Advisory Panel.

%DEVIATION CHARTS


The %Deviation by sample chart helps to identify trends and shifts in performance.

RIQAS TDPAs but can be set to e.g. biological variation or regulatory requirement on request.

The %Deviation by concentration chart enables rapid assessment of concentration related biases. Biases at low or high concentrations can be easily determined.


Current sample indicated by square. %Deviation at specific concentration.

LT033 RIQAS Explained FEB24.indd 12 25/04/2024 09:28

SUMMARY PAGE

Located at the back of the RIQAS Report, the Summary Page collates the key information, allowing participants to review the performance of all parameters at-a-glance.

2.120 17.705 12.387 20.454 11.976 8.203 0.251	2.230 19.000 12.000 22.000 11.000	1.00 0.61 -0.33	0.37	%DEV 2 5.2 7.3	2.0 -2.9	TS 72 93	107	Performance
17.705 12.387 20.454 11.976 8.203	19.000 12.000 22.000	0.61 -0.33	-0.27					
12.387 20.454 11.976 8.203	12.000 22.000	-0.33		7.3	-2.9	03		
20.454 11.976 8.203	22.000		0.47			73	105	
11.976 8.203		0.70	-0.4/	-3.1	-3.8	119	103	
8.203	11.000	0.72	-0.29	7.6	-2.5	86	103	_
		-0.86	-0.03	-8.2	-0.4 —	3 78	100 —	4
0.251	6.900	-1.48	0.15	-15.9	1.5	54	98	
	0.380	2.57	2.64	51.3	47.2	31	29	<u> </u>
0.701	0.640	-0.91	-0.29	-8.8	-2.9		101	
6.074	6.020	-0.19	-0.40	-0.9	-1.8	120	92	
76.353	77.000	0.30	-0.28	0.8	-0.8	120	98	
12.696	110.000	-0.55	0.05	<u>2.4</u>	0.2	97	115	
11.659	111.000	-0.08	0.35	-0.6	2.5	120	107	
0.607	0.620	0.27	0.06	2.1	0.5	120	117	
36.429	36.000	-0.26	-0.84	-1.2	-3.7	120	82	
98.836	102.000	0.21	-0.04	3.2	-0.4	120	113	
97.374	99.000	0.28	0.01	1.7	0.1	120	114	
	No Result		Too Few		Too Few	N/A	N/A	
85.894	87.000	0.11	-0.70	1.3	-6.3	120	89	
1.313	1.390	0.79	-0.07	5.8	-0.5	82	107	
1.451	1.540	1.02	0.02	6.1	0.1	71	112	
1.770	1.840	1.10	-0.25	3.9	-0.7	67	99	
3.850	3.830	-0.11	0.07	-0.5	0.3	120	114	
12.537	114.000	0.58	-0.01	1.3	-0.0	95	104	
33.143	133.000	-0.01	-0.01	-0.1	-0.1	120	117	
23.626	24.000	0.18	-0.09	1.6	-0.6	120	114	
5.872	5.000	<u>-2.02</u> —	5 -0.57	-14.9	-4.0	<u>41</u>	95	A
3.135	3.100	-0.20	-0.44	-1.1	-2.4	120	107	
	76.353 112.696 111.659 0.607 36.429 98.836 97.374 85.894 1.313 1.451 1.770 3.850 112.537 133.143 23.626 5.872	76.353 77.000 112.696 110.000 111.659 111.000 0.607 0.620 36.429 36.000 98.836 102.000 97.374 99.000 No Result 85.894 87.000 1.313 1.390 1.451 1.540 1.770 1.840 3.850 3.830 112.537 114.000 133.143 133.000 23.626 24.000 5.872 5.000	76.353 77.000 0.30 112.696 110.000 -0.55 111.659 111.000 -0.08 0.607 0.620 0.27 36.429 36.000 -0.26 98.836 102.000 0.21 97.374 99.000 0.28 No Result 85.894 87.000 0.11 1.313 1.390 0.79 1.451 1.540 1.02 1.770 1.840 1.10 3.850 3.830 -0.11 112.537 114.000 0.58 133.143 133.000 -0.01 23.626 24.000 0.18 5.872 5.000 -2.02	76.353 77.000 0.30 -0.28 112.696 110.000 -0.55 0.05 111.659 111.000 -0.08 0.35 0.607 0.620 0.27 0.06 36.429 36.000 -0.26 -0.84 98.836 102.000 0.21 -0.04 97.374 99.000 0.28 0.01 No Result Too Few 85.894 87.000 0.11 -0.70 1.313 1.390 0.79 -0.07 1.451 1.540 1.02 0.02 1.770 1.840 1.10 -0.25 3.850 3.830 -0.11 0.07 112.537 114.000 0.58 -0.01 133.143 133.000 -0.01 -0.01 23.626 24.000 0.18 -0.09 5.872 5.000 -2.02 5	76.353 77.000 0.30 -0.28 0.8 112.696 110.000 -0.55 0.05 2.4 111.659 111.000 -0.08 0.35 -0.6 0.607 0.620 0.27 0.06 2.1 36.429 36.000 -0.26 -0.84 -1.2 98.836 102.000 0.21 -0.04 3.2 97.374 99.000 0.28 0.01 1.7 No Result Too Few 85.894 87.000 0.11 -0.70 1.3 1.313 1.390 0.79 -0.07 5.8 1.451 1.540 1.02 0.02 6.1 1.770 1.840 1.10 -0.25 3.9 3.850 3.830 -0.11 0.07 -0.5 112.537 114.000 0.58 -0.01 1.3 133.143 133.000 -0.01 -0.01 -0.1 23.626 24.000 0.18 -0.09	76.353 77.000 0.30 -0.28 0.8 -0.8 112.696 110.000 -0.55 0.05 2.4 0.2 111.659 111.000 -0.08 0.35 -0.6 2.5 0.607 0.620 0.27 0.06 2.1 0.5 36.429 36.000 -0.26 -0.84 -1.2 -3.7 98.836 102.000 0.21 -0.04 3.2 -0.4 97.374 99.000 0.28 0.01 1.7 0.1 No Result Too Few Too Few 85.894 87.000 0.11 -0.70 1.3 -6.3 1.313 1.390 0.79 -0.07 5.8 -0.5 1.451 1.540 1.02 0.02 6.1 0.1 1.770 1.840 1.10 -0.25 3.9 -0.7 3.850 3.830 -0.11 0.07 -0.5 0.3 112.537 114.000 0.58 -0.01	76.353 77.000 0.30 -0.28 0.8 -0.8 120 112.696 110.000 -0.55 0.05 2.4 0.2 97 111.659 111.000 -0.08 0.35 -0.6 2.5 120 0.607 0.620 0.27 0.06 2.1 0.5 120 36.429 36.000 -0.26 -0.84 -1.2 -3.7 120 98.836 102.000 0.21 -0.04 3.2 -0.4 120 97.374 99.000 0.28 0.01 1.7 0.1 120 No Result Too Few Too Few N/A 85.894 87.000 0.11 -0.70 1.3 -6.3 120 1.313 1.390 0.79 -0.07 5.8 -0.5 82 1.451 1.540 1.02 0.02 6.1 0.1 71 1.770 1.840 1.10 -0.25 3.9 -0.7 67	76.353 77.000 0.30 -0.28 0.8 -0.8 120 98 112.696 110.000 -0.55 0.05 2.4 0.2 97 115 111.659 111.000 -0.08 0.35 -0.6 2.5 120 107 0.607 0.620 0.27 0.06 2.1 0.5 120 117 36.429 36.000 -0.26 -0.84 -1.2 -3.7 120 82 98.836 102.000 0.21 -0.04 3.2 -0.4 120 113 97.374 99.000 0.28 0.01 1.7 0.1 120 114 No Result Too Few Too Few Too Few N/A N/A 85.894 87.000 0.11 -0.70 1.3 -6.3 120 89 1.313 1.390 0.79 -0.07 5.8 -0.5 82 107 1.451 1.540 1.02 0.02 6.1 0.1 71 112 1.770 1.840 1.10 -0.2

- RM %DEV Average of the last 10 %DEV for this parameter.
- RMTS Average of the last 10 Target Scores for this parameter.
- All poor performance is highlighted in bold and underlined.
- Overall RMSDI = average RMSDI for this sample distribution.
- Overall RM%DEV = average RM%DEV for this sample distribution.
- 8 Overall RMTS = average RMTS for this sample distribution.

END-OF-CYCLE QUANTITATIVE REPORT

The End-of-Cycle Report is sent to labs receiving standard reports at the end of each cycle and provides a complete summary of statistics. Results can also be compared to the previous cycle.

Instrument: Reagent:	Siemens/	esol Purple Dade Dimension Dade Behring	on RxL/Max	x/Xpand						
RIQAS TDI	PA: 7.1%	Bio	logical Va	ariation: 3.9%						
Sample	Result	Unit	N	Mean for Comparison	CV%	Um	SDPA	SDI	TS	% Deviatio
1	28.200	g/l	68	I 28.013	2.4	0.10	1.26	0.15	120	0.67
2	26.900	g/l	87	I 26.853	2.7	0.10	1.21	0.04	120	0.17
3	39.900	g/l	71	I 40.531	2.5	0.15	1.82	-0.35	118	-1.56
4	19.200	g/l	81	I 19.429	2.5	0.07	0.87	-0.26	120	-1.18
5	41.700	g/l	67	I 41.859	2.0	0.07	1.88	-0.20	120	-0.38
6	57.300		87	I 57.257	2.7	0.13		0.02	120	0.08
7		g/l					2.58			
	45.000	g/l	72	I 45.850	2.1	0.14	2.06	-0.41	110	-1.85
8	27.600	g/l	87	I 28.013	2.5	0.09	1.26	-0.33	120	-1.47
9	41.200	g/l	70	I 41.891	2.2	0.14	1.88	-0.37	115	-1.65
10	26.900	g/l	83	I 26.742	3.3	0.12	1.20	0.13	120	0.59
11	40.700	g/l	71	I 40.601	2.2	0.14	1.83	0.05	120	0.24
12	45.100	g/l	80	I 45.456	2.2	0.14	2.04	-0.17	120	-0.78
13	27.300	g/l	63	I 28.179	2.0	0.09	1.27	-0.69	87	-3.12
			ycle 45	Cycle 46					I	I
					•					
Cycle Ave			-0.23	-0.18						
Cycle Ave	rage TS		110	116						
	rage %DEV		-1.05	-0.79						
Cycle Ave Cycle Ave	rage Absolute	e %DEV	1.63	1.06]	120	• •	• •	•	• • •
Cycle Ave	× ×	* %DEV	1.63	1.06	Target Score	110 100 90 80 70 60 50 40 30 20				
Cycle Ave	× × ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	×		110 100 90 80 70 60 50 40 30 20		5 6 7		1 I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cycle Ave	× ×	×	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 60 50 40 30 20	2 3 4	Sample		10 11 12
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 60 50 40 30 20		5 6 7		
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 60 50 40 30 20 10		5 6 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 60 50 40 30 20 10 0		5 6 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 50 40 30 20 10 0		5 6 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 60 50 40 30 20 10 0		5 6 7		I I I 1 30 11 12
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 60 50 40 30 20 10 0		Sample l		I I I 1 10 11 12
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 60 50 40 30 20 10 0		Sample l		10 11 122
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 60 60 60 10 10 10 10 10 10 10 10 10 10 10 10 10	2 5	Sample l		1 1 1 1 30 11 12
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× ×		110 100 90 80 70 60 50 40 30 20 10 0		Sample l		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× × × × × × × × × × × × × × × × × × ×		110 100 90 80 70 60 50 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1		Sample l		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× × × × × × × × × × × × × × × × × × ×		110 100 90 80 70 60 60 60 10 10 10 10 10 10 10 10 10 10 10 10 10		Sample l		20 11 12
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× × × × × × × × × × × × × × × × × × ×		110 100 90 80 70 60 50 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1		Sample l		1 1 12
Cycle Ave	× ×	× • • • • • • • • • • • • • • • • • • •	× × • • • • • • • • • • • • • • • • • •	× × × • • • • • × × × × × × × • • × × •		110 100 90 80 70 70 10 10 10 10 10 10 10 10 10 10 10 10 10		Sample l		10 11 12

14

25/04/2024 09:28

END-OF-CYCLE REPORT TEXT SECTION

The text section summarises the statistical information for all samples.

1 Albumin, g/l

Method: Bromocresol Purple

Instrument: Siemens/Dade Dimension RxL/Max/Xpand

Reagent: Siemens/Dade Behring

3 RIQAS TDPA: 7.1% Biological Variation: 3.99

Your assay details at the end of the cycle.

The RIQAS TDPA and biological variation for the parameter are shown if available.

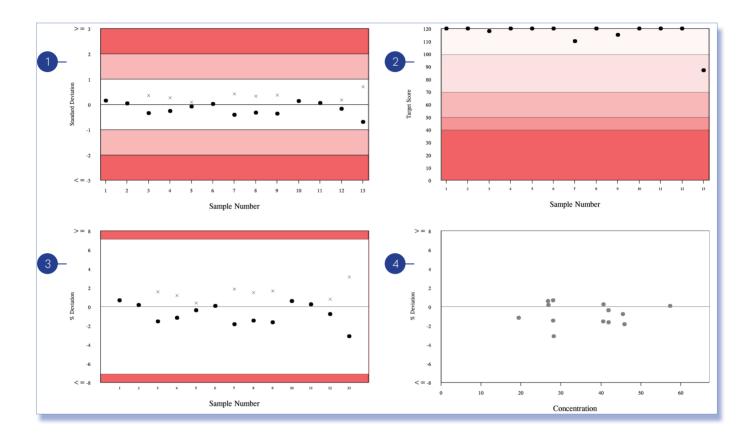
Sample	Result	Unit	N	Mean	SDPA	Um	CV%	SDI	TS	% Deviation
1	28.200	g/l	68	I 28.013	1.26	0.10	2.4	0.15	120	0.7
2	26.900	g/l	87	I 26.853	1.21	0.10	2.7	0.04	120	0.2
3	39.900	g/l	71	M 40.531	1.82	0.15	2.5	-0.36	116	-1.5
4	19.200	g/l	81	I 19.429	0.87	0.07	2.5	-0.27	120	-1.2
5	41.700	g/1	67	I 41.942	1.88	0.13	2.0	-0.09	120	-0.4
6	57.300	g/l	87	I 57.257	2.58	0.21	2.7	0.02	120	0.1
7	45.000	g/l	72	I 45.850	2.06	0.14	2.1	-0.43	108	-1.8
8	27.600	g/l	87	I 28.011	1.26	0.09	2.5	-0.34	118	-1.5
9	41.200	g/l	70	I 41.823	1.88	0.14	2.2	-0.38	113	-1.6
10	26.900	g/1	83	I 26.742	1.20	0.12	3.3	0.14	120	0.6
11	40.700	g/l	71	I 40.601	1.83	0.13	2.2	0.06	120	0.2
12	45.100	g/l	80	I 45.119	2.05	0.14	2.2	-0.18	120	-0.8
13	27.300	g/1	63	I 28.454	1.27	0.09	2.0	-0.72	86	-3.1

Summary of your results and statistics are shown, including Mean for Comparison, SDPA, %CV, U_m, SDI, Target Score, %Deviation.

		Cycle 45	Cycle 46
	Cycle Average SDI	-0.23	-0.18
15	Cycle Average TS	110	116
	Cycle Average %DEV	-1.05	-0.79
16	Cycle Average Absolute SDI	0.36	0.24
10	Cycle Average Absolute %DEV	1.63	1.06

Table containing a summary of your performance for previous cycle and current cycle, including Average Absolute SDIs and %Deviations.

LT033 RIQAS Explained FEB24.indd 15 25/04/2024 09:28

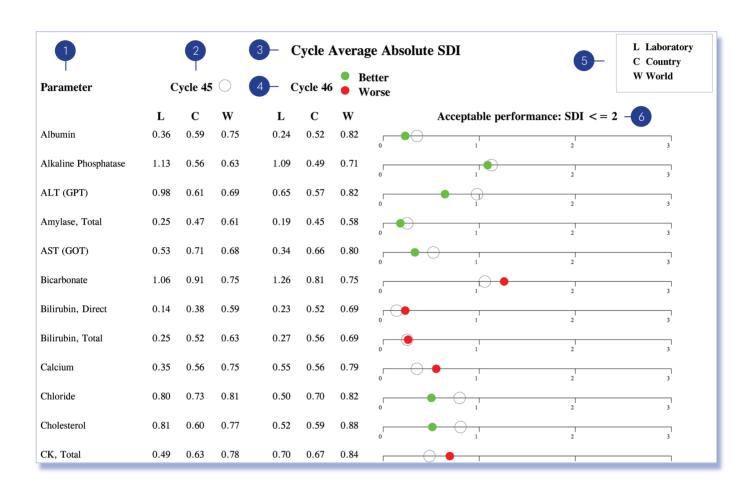

END-OF-CYCLE REPORT TEXT SECTION

Report presented in your chosen unit	Cycle average of your p Deviation Index, Target	performance indicators – Standard Score and %Deviation.	
Your assay details as of the last sample		(Sum of SDIs returned for the completed cycle)	
RIQAS TDPA and Biological variation	Cycle Average SDI =	(Number of samples returned in cycle)	
Sample number		cycle)	
Your results for each sample	Cycle Average Target Score =	(Sum of your Target Scores returne for the completed cycle)	
Unit your result was returned in	rarget Score –	(Number of samples returned in cycle)	
Number of results used for statistical analysis	Cycle Average	(Sum of your %Deviations returne for the completed cycle)	
Mean for Comparison (including comparison level)	%Deviation =	(Number of samples returned in cycle)	
SDPA = Standard Deviation for performance assessment		7. 7	
Uncertainty of Mean for Comparison	%Deviation. Absolute va	lute values of your SDI and alues show how far a value is from zero his is an indication of the magnitude	
Coefficient of Variation (%)	of accuracy.	(C.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Your Standard Deviation Index	Cycle Average	(Sum of your Absolute SDIs returned for the completed cycle)	
Your Target Score	Absolute SDI =	(Number of samples returned in cycle)	
Your %Deviation	Cycle Average	(Sum of your Absolute %Deviation returned for the completed cycle)	
	Absolute %Deviation =	(Number of samples returned in cycle)	

LT033 RIQAS Explained FEB24.indd 16 25/04/2024 09:28

END-OF-CYCLE CHART SECTION REPORT

Your results for current cycle shown in various diagrams.



Levey-Jennings ch	art	Shows your SDIs for a full cycle.
		 Shows SDI (positive and negative)
		x Shows absolute SDI
		A SHOWS absolute ODI
Target Score char	t	Shows your Target Scores for a full cycle.
%Deviation by sar	mple chart	Shows your %Deviations for a full cycle.
		Acceptable limits equal to TDPA unless alternative limits are registered
		by the lab.
		 Shows %Deviation (positive and negative)
		x Shows absolute %Deviation
		x Shows absolute Adeviation
%Deviation by Co	oncentration chart	Shows your results for a full cycle.
,		,

LT033 RIQAS Explained FEB24.indd 17 25/04/2024 09:28

END-OF-CYCLE CURRENT & PREVIOUS CYCLE ABSOLUTE SDIs REPORT

Based on the cycle average absolute SDI, this chart provides a visual representation of your laboratory's performance compared to the previous cycle.

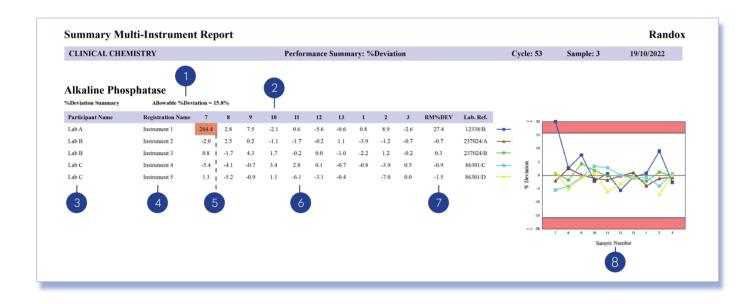
Parameter list	List of all parameters registered.		
Results for previous cycle	Indicated by open circle on the chart.		
Report title - Cycle Average Absolute SDI	This shows your performance this cycle compared to the prev cycle.		
Results for current cycle	Indicated by a closed circle on the chart.		
Legend	Cycle Average Absolute SDIs are shown for:		
	 L Your results throughout the cycle C All labs within your own country W All labs Worldwide 		
Graphical representation of Absolute SDIs	Acceptable performance is < 2.		
	If Absolute SDI for current cycle is less than that for the previous cycle, this is indicated by a green circle.		
	If Absolute SDI for current cycle is greater than that for the previous cycle, this is indicated by a red circle.		

The closer the circle is to zero, the better the performance.

LT033 RIQAS Explained FEB24.indd 18 25/04/2024 09:28

END-OF-CYCLE CERTIFICATE OF PERFORMANCE REPORT

An End-of-Cycle report will be issued for all registrations. However, the Certificate of Performance will only be available for parameters where results for at least 50% of samples in the cycle have been returned. Labs joining after the beginning of the cycle will only receive the Certificate of Performance if they meet this criterion. Any parameters not included on the Certificate of Acceptable Performance will be listed on the Notification of Unacceptable Performance.

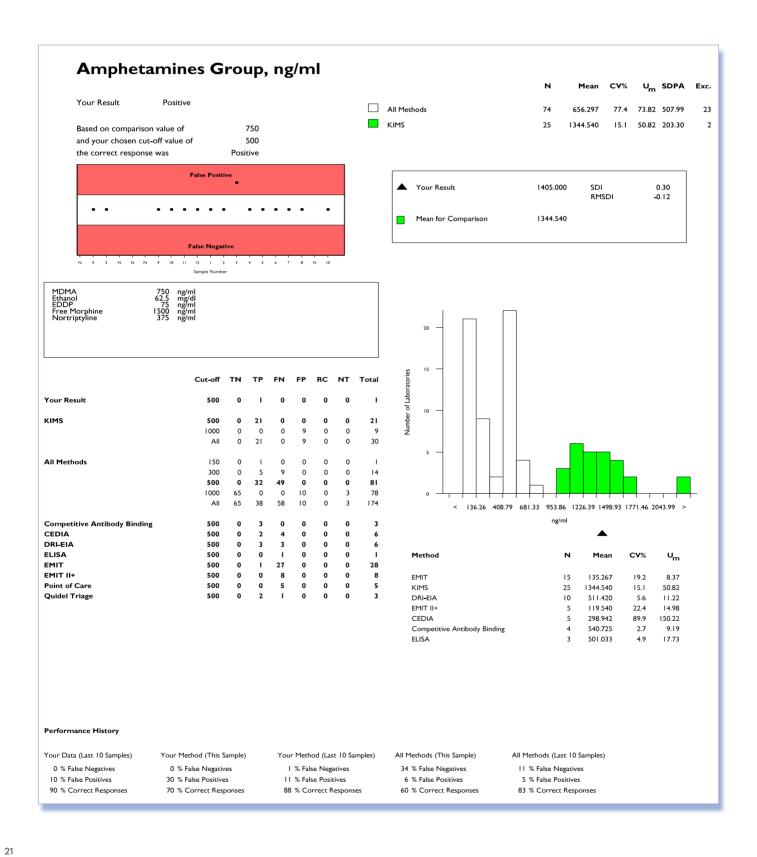


1	Full registration address	Your full registration address details.
2	Your lab reference number	Used to identify each lab.
3	Programme / cycle number	Programme and current, completed cycle number.
4	Date	Date End-of-Cycle report is issued.
5	Parameters	List of parameters including the assay details for which cycle absolute SDI is < 2.
6	Average Absolute SDI	Your Cycle Average Absolute SDI.

LT033 RIQAS Explained FEB24.indd 19 25/04/2024 09:28

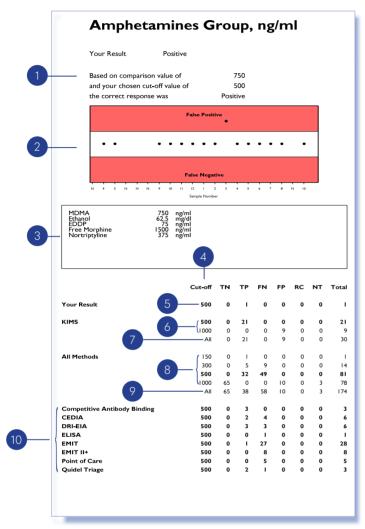
MULTI-INSTRUMENT REPORT

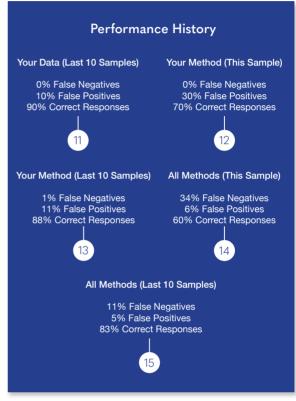
Register up to five instruments per programme at no extra cost. In addition to a standard report for each instrument, a multi-instrument report is also provided allowing comparitive performance assessment.


LT033 RIQAS Explained FEB24.indd 20 25/04/2024 09:28

URINE TOXICOLOGY REPORT

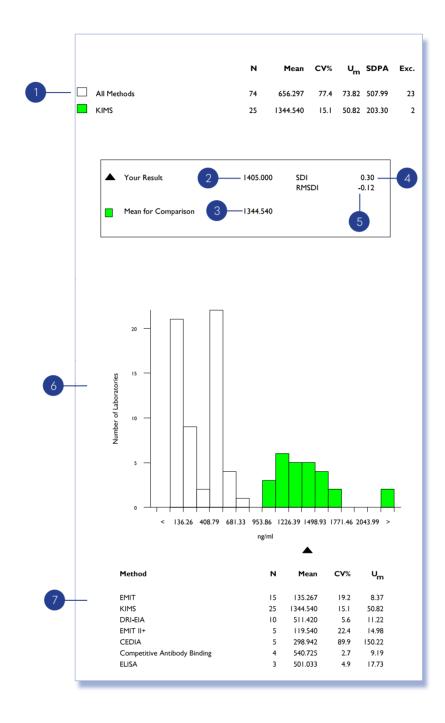
Laboratory performance is presented in both quantitative and qualitative screening formats, allowing for easy interpretation at-a-glance.


Screening Section


Quantitative Section

URINE TOXICOLOGY REPORT SCREENING SECTION

Qualitative comparison of screening results available for each parameter.


- Text section shows the correct response for the lab based on a comparison between the comparison value and the lab's cut off value.
- Screening Results: This chart is a quick visualisation of your performance over the last 20 samples. A result in the white section indicates a correct response. A result in the upper red section indicates a False Positive response, and a result in the lower red section indicates a False Negative response.
- 3 Comment section for RIQAS to provide your laboratory with additional relevant information regarding this sample, such as spiked metabolite concentration.
- Screening result response categories. All abbreviations indicated at the bottom of the report page.
 - TN true negative TP true positive FN false negative FP false positive RC sent for confirmation NT not tested
- Screening Summary: Your screening result shown in the appropriate response category and your cut off for this sample.
- Screening results for all cut-offs returned for this sample within your method group.

- 7 Total screening results over all cut-offs for your laboratory's method.
- Screening results for all cut-offs returned for this sample over all methods.
- Total screening results over all cut-offs for all methods.
- Screening results for other methods using same cut-off as your laboratory.
- Performance history for this parameter, based on previous 10 samples.
- Performance of your method over all cut-offs for this sample.
 - Performance history of your method over all cut-offs, based on the previous 10 samples.
- Performance of all methods over all cut-offs for this sample.
- Performance history of all methods over all cut-offs, based on the previous 10 samples.

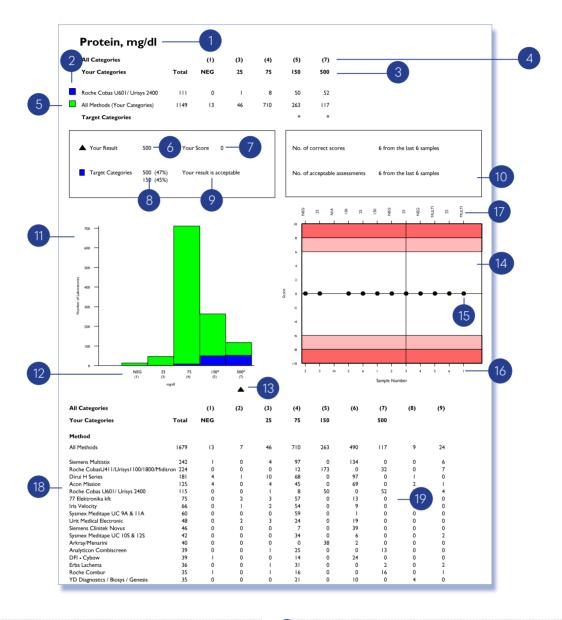
LT033 RIQAS Explained FEB24.indd 22 25/04/2024 09:28

URINE TOXICOLOGY REPORT QUANTITATIVE SECTION

Quantitative statistical comparison available for each parameter.

Standard Deviation Index =

(Your Result - Mean for Comparison)

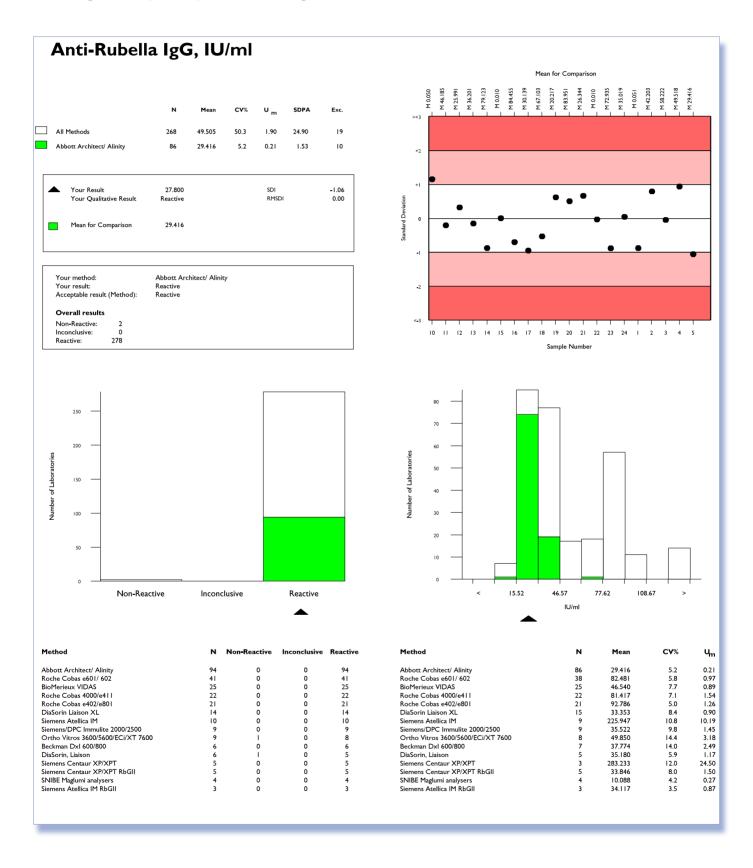

SD of Mean for comparison

- Running mean SDI = average of last 10 SDIs for this parameter (If fewer than 10 results, "Too Few" is printed).
- Quantitative Results Histogram: This graph provides a quick visualisation of how your quantitative result falls into the overall picture for all methods and your method group.
- All available method statistics for this sample.

LT033 RIQAS Explained FEB24.indd 23 25/04/2024 09:28

URINALYSIS REPORT

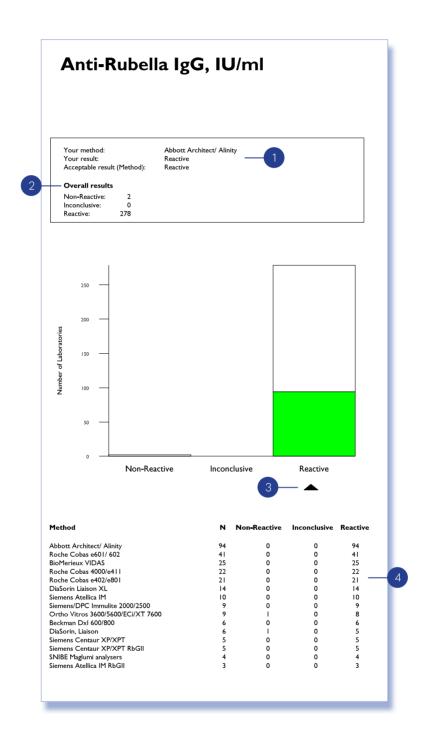
Your performance for each parameter is presented in a simple, convenient report.



- Categories are stated in your unit.
- Your method group.
- Your categories (available result options for chosen test strip and unit).
- 4 All categories (result options) available for this parameter for any method (test strip).
- Results from all methods (test strips) returning results in the same categories as your lab.
- 6 Your Result
- Your Score: Scores between 0-6 are acceptable, 7 borderline and 8-10 unacceptable.
- Target categories and percentages of submitted results in that categories. Target categories are based on 80% consensus in the results in your categories. Multiple categories may be used to make up the 80% consensus. Target categories are highlighted by * in text section.
- Performance Statement.

- Historical Performance: Provides number of correct scores and acceptable assessments for the last 6 samples.
- Categories Histogram: A quick visualisation of how your lab's result falls into the overall picture for your categories.
- Possible reporting categories for your method. Target categories are highlighted by *.
- 13 Your result is indicated by the black triangle.
- Levey-Jennings type chart: Acceptable scores (0-6) have no shading, borderline scores (7) have light red shading, unacceptable scores (8-10) have dark red shading.
- Score for each sample number.
- Sample Number.
- Target Categories: If there was more than 1 target category assigned for a sample Multi is stated.
- All methods reported for this parameter.
- Detailed summary of results: This table enables you to see how you compare to all other results.

SEROLOGY REPORT


Laboratory performance is presented in both quantitative and qualitative screening formats, allowing for easy interpretation at-a-glance.

LT033 RIQAS Explained FEB24.indd 25 25/04/2024 09:28

SEROLOGY: QUALITATIVE REPORT

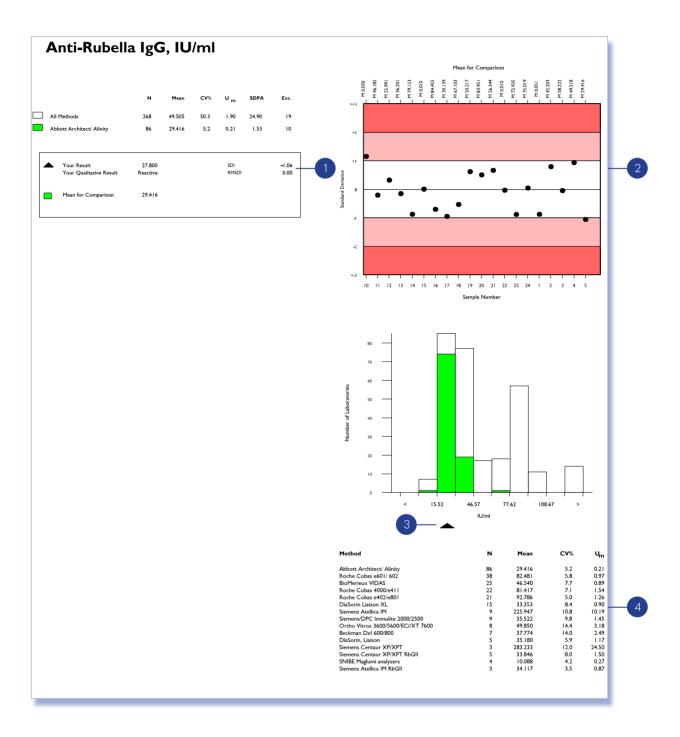
Your performance for each sample is presented in a convenient single page per parameter report format.

Your qualitative result and chosen method are presented along with the acceptable result based on an 80% consensus. This consensus will be at the method level if there are >=5 labs in the group or if there are <5 labs, will be at the all method level.

Overall Summary shows the number of results for this parameter and sample which are non-reactive, inconclusive or reactive.

Your Result is shown as a black triangle on the category chart compared to other laboratories in groups:

All Methods


Your Method

Summary shows performance of all the methods used to analyse the parameter.

LT033 RIQAS Explained FEB24.indd 26 25/04/2024 09:28

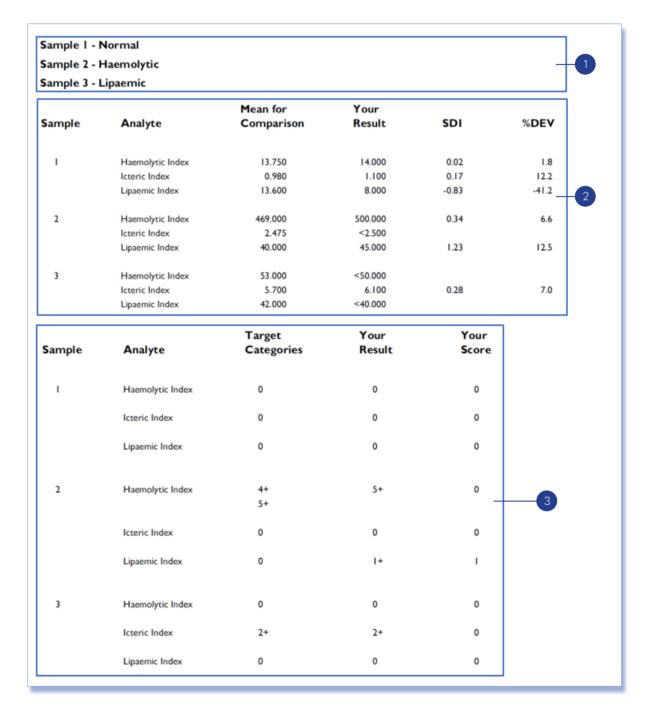
SEROLOGY: SCREENING (QUANTITATIVE) REPORT

Your performance for each sample is presented in a convenient single page per parameter report format.

Levey-Jennings chart - Your SDIs for previous 20 samples.

Your result is presented on the bar graph as a black triangle, showing how you compare to:

All Methods


Your Method

Multi Method Statistics section provides an easy way of assessing the performance of the methods used to analyse the parameter.

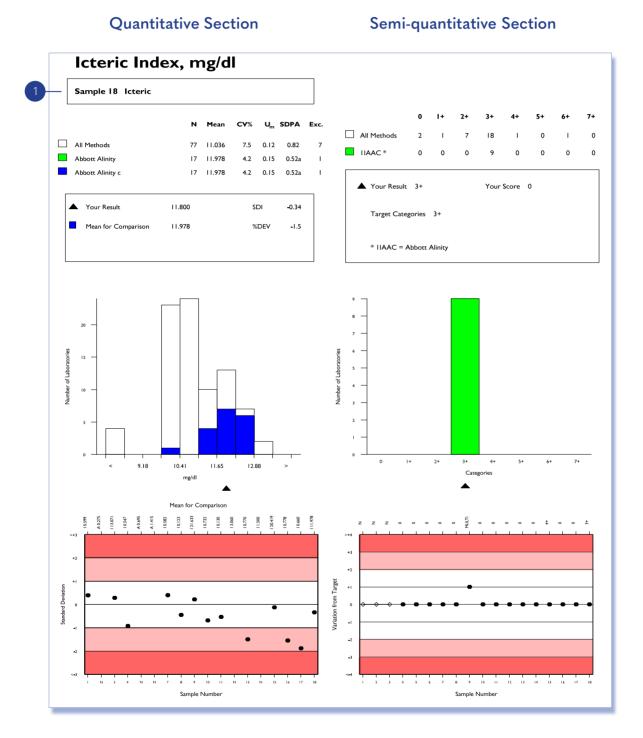
LT033 RIQAS Explained FEB24.indd 27 25/04/2024 09:28

SERUM INDICES: SUMMARY PAGE

The RIQAS Serum Indices EQA programme is designed for the pre-analytical assessment of Haemolytic, Icteric and Lipemic (HIL) interferences. HIL parameters include the option of quantitative or semi-quantitative reporting. Interpretation of chemistry parameter results is also included for a number of parameters. The summary page collates the key information on both the quantitative and qualitative results for the HIL parameters.

The next section shows the summary of the quantitative results for the Serum Indices and your performance (SDI and %DEV) for each sample.

LT033 RIQAS Explained FEB24.indd 28

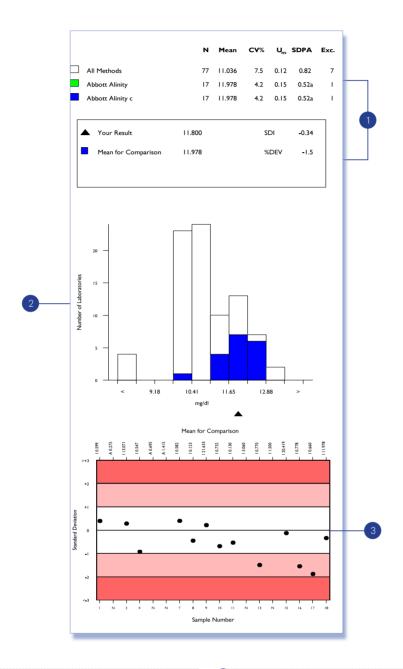

(3

The final section shows the summary of the semi-quantitative results for the Serum Indices. This includes the target categories based off an 80% consensus in the results, your result and your score for each of the samples.

25/04/2024 09:28

SERUM INDICES REPORT

The summary section is followed by report pages for the 3 serum indices parameters. There will be 3 pages for each index - one for each sample.



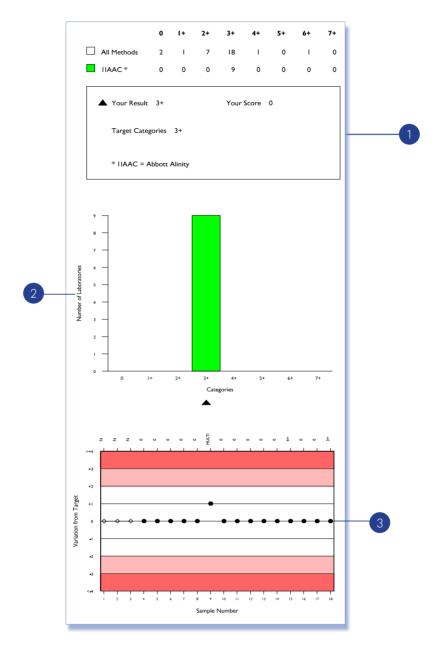
Under the Serum Index parameter name the report will display the sample status e.g. if the sample should be flagging as haemolytic, icteric or lipaemic. As with all reports, the results contained within the report pages will be in the unit selected by the lab during the registration process.

LT033 RIQAS Explained FEB24.indd 29 25/04/2024 09:28

SERUM INDICES REPORT: QUANTITATIVE SECTION

Quantitative comparison of results available for each index.

Text Section: In the text section you will see the All method, method and instrument means for comparison in addition to the respective statistics. Below this you will see your result, your Mean for comparison and your performance (SDI and %DEV) for this specific sample. For samples which do not hit specific flags for the indices, a large proportion of analysers will have a less than (<) setting. On a RIQAS report these will be counted in the excluded column. As one sample in each distribution will be a normal sample, it is likely there will be a large number of (<) results returned for these samples so we are indicating in this section the percentage of results that have been returned as a < or > result to allow labs to see if the number of excluded results is high that there is an explanation for this.


Histogram: As with other RIQAS reports, this histogram shows an overview of the spread of the results that have been returned for each level of comparison (all method (white), method (green) and instrument (blue)). The lab's result is indicated by the black triangle at the bottom of the chart.

Levey Jennings style chart: The Levey Jennings chart will display the lab's SDIs. These reflect laboratory performance in relation to SDPAs and are useful to monitor performance over time. Acceptable performance is SDI < 2. The sample numbers will be displayed along the bottom of the chart and the Means for Comparison including the level will be displayed along the top of the report.

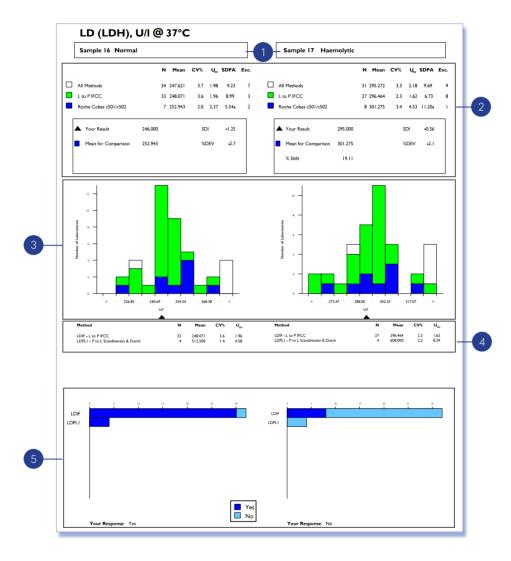
LT033 RIQAS Explained FEB24.indd 30 25/04/2024 09:28

SERUM INDICES REPORT: SEMI-QUANTITATIVE SECTION

Semi-quantitative comparison of the results available for each parameter.

Text Section: This shows the breakdown of the semiquantitative results returned – broken down by all methods and the labs chosen method. The method is displayed as a code, the description for which is found in the box just below containing the lab's result.

The lab's result, target categories (based on an 80% consensus), and the lab's score based on how many categories away from the target category the result is, are displayed below the breakdown of each category.


2 **Histogram:** The histogram shows a pictorial breakdown of the results returned for each category. The lab's result is indicated by the black triangle at the bottom of the chart.

Levey Jennings chart: This chart will display the lab's score or variation from the target category.

The sample numbers will be displayed along the bottom of the chart and the target categories along the top. If there is more than one target category, the chart will display the word 'Multi'.

SERUM INDICES REPORT: CHEMISTRY PARAMETER PAGE

Following the report pages for the 3 Serum Indices, there are the report pages for any chemistry parameters labs have registered for. There are 2 pages for each parameter, one showing the comparison between the first sample (the normal sample) and the second sample and the second page showing the comparison between the first and third sample respectively.

Sample Status: Under the chemistry parameter name the report will display the sample status e.g. if the sample should be flagging as haemolytic, icteric or lipaemic for the 2 samples being compared. As with all reports, the results contained within the report pages will be in the unit selected by the lab during the registration process.

The rest of the report page shows the same information for each of the 2 samples being compared.

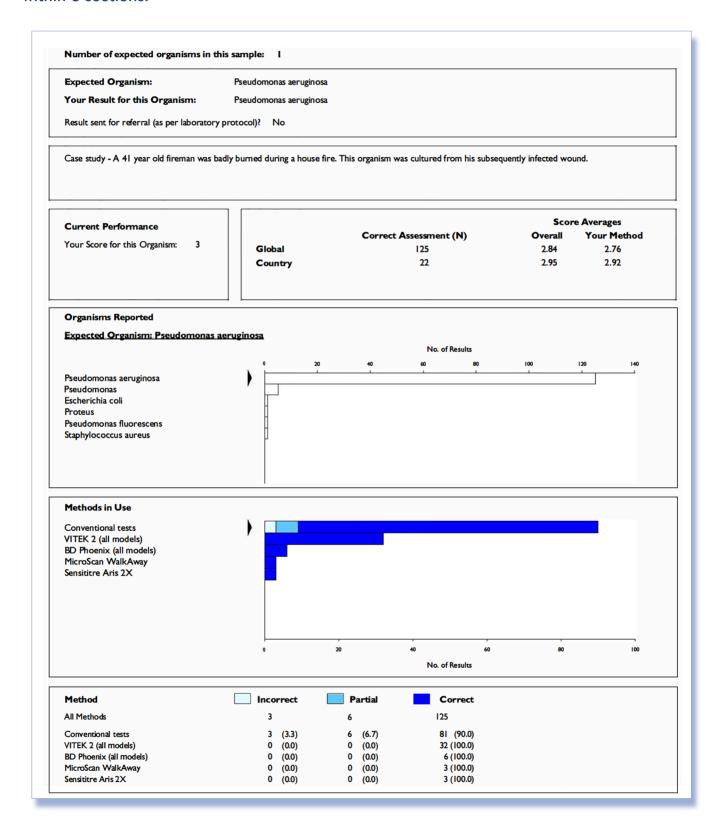
The first sample of the 3 in each distribution will be the normal sample, the other 2 may or may not flag for one or more of the Indices.

Text Section: In the text section you will see the all method, method and instrument means for comparison and the respective statistics. Below this you will see you result, your Mean for comparison and your performance (SDI and %DEV) for this specific sample.

The % shift in the Means for Comparison between the normal and the affected sample is displayed in the results box for the second and third sample.

3 Histogram: As with other RIQAS reports, this histogram shows an overview of the spread of the results that have been returned for each level of comparison (all method (white), method (green) and instrument (blue)). The lab's result is indicated by the black triangle at the bottom of the chart.

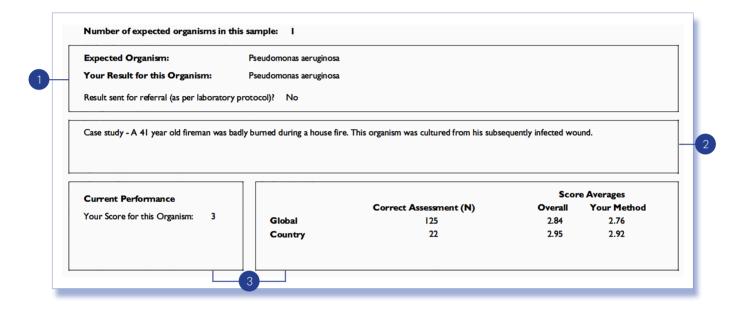
Method Summary Section: As with other RIQAS reports, this section provides an easy way of assessing the performance of other methods used to analyse the parameter in question. The code at the beginning of the description is the key to the following section - Reporting of the Result based on Serum Indices flag.


Reporting of the Result based on Serum Indices flag:

Depending on the Index that has been flagged, the lab may choose to not report the result to the clinician. In this section the lab can report on whether they would report the result for this parameter based on the result from the Serum Indices analysis.

LT033 RIQAS Explained FEB24 indd 32 25/04/2024 09:28

BACTERIAL IDENTIFICATION REPORT


Presented in a convenient single report, all results for the current sample will be displayed within 6 sections.

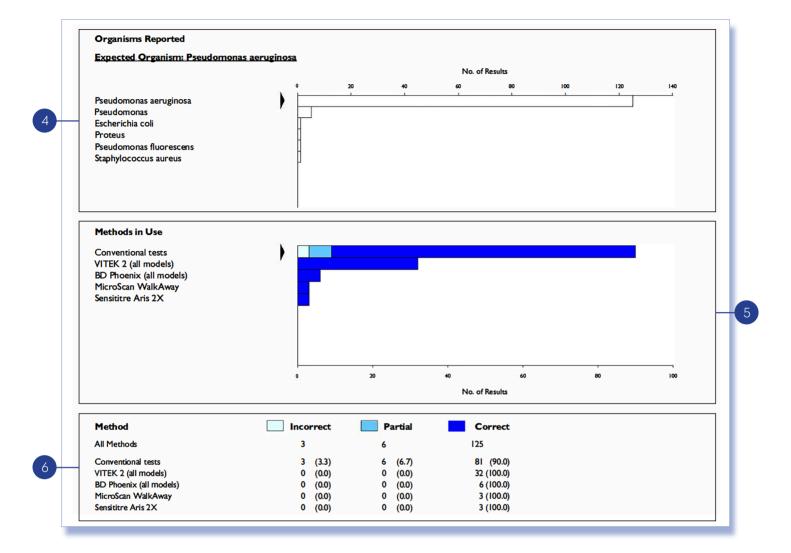
LT033 RIQAS Explained FEB24.indd 33 25/04/2024 09:28

BACTERIAL IDENTIFICATION REPORT

Participants can quickly and easily identify their performance for the current sample against their peers across geographic locations and those utilising same methodologies. Each section is explained in further detail below.

- Sample Results: This shows the expected organism, the labs selected organism and information on the laboratory protocol being followed. Information on the lab's protocol will have an effect on the scoring for this sample.
- 2 Case Study: Clinical details are provided for each sample.
- Performance Scoring: This will contain the lab's specific score for this sample. It will also show the correct assessments and overall scoring with the lab's country and globally.

If sample is NOT sent for referral, scoring is marked out of 3

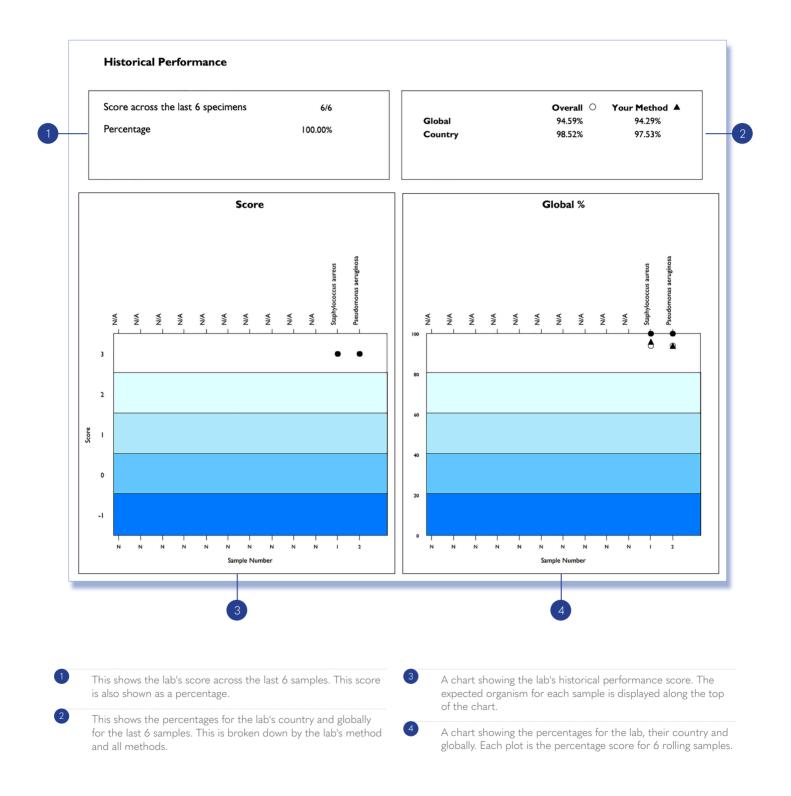

- Correct Genus + species = 3
- Correct Genus + species is blank, if this is lab protocol = 3
- Correct Genus + species is blank = 1
- Correct Genus + incorrect species = 1
- Incorrect Genus and species but correct Gram stain = 0
- Incorrect Genus, species and Gram stain = -1

If sample is sent for referral, scoring is marked out of 2

- Correct Genus + species =
- Correct Genus + species is blank, if this is lab protocol = 2
- Correct Genus + species is blank =
- Correct Genus + incorrect species = 1
- Incorrect Genus and species but correct Gram stain = 0
- Incorrect Genus, species and Gram stain = 0

LT033 RIQAS Explained FEB24.indd 34 25/04/2024 09:28

BACTERIAL IDENTIFICATION REPORT



- 4 Bar Chart of Organisms Reported: This will list all organisms reported by each lab ordered in descending frequency. The black triangle indicates the lab's result.
- Bar Chart Detailing Methods Used: This will list all methods used by each lab ordered in descending frequency. The bars are colour coded to highlight correct, partial and incorrect responses for each method. The black triangle indicates the lab's result.
- **Method Summary Section:** This is a table providing the number of responses by method. The figures in brackets indicate the percentage of responses for each method.

LT033 RIQAS Explained FEB24.indd 35 25/04/2024 09:28

BACTERIAL IDENTIFICATION - HISTORICAL PERFORMANCE

Track your performance across the previous 12 specimens using this one-page report.

LT033 RIQAS Explained FEB24.indd 36 25/04/2024 09:28

ANTIMICROBIAL SUSCEPTIBILITY TESTING

Antimicrobial susceptability testing table details all reported antibiotics for current sample and AST response.

Organism: Pseudomonas aerug	inosa				
Antibiotic	Resistant	Intermediate	Sensitive	Your Result (Score)	Target
Amikacin	2	2	107	Sensitive (2/2)	Sensitive (Y)
Amoxicillin	2	0	0	GG1151611'G (272)	Too Few
Amoxicillin/Clavulinic Acid	2	0	0		Too Few
Ampicillin	6	0	1		Resistant (A)
Ampicillin/Sulbactam	1	0	1		Too Few
Azithromycin	0	1	0		Too Few
Aztreonam	ı	9	15	Intermediate (N/A)	N/A
Cefazolin	3	1	0	,	Too Few
Cefepime	2	25	68	Intermediate (2/2)	Intermediate
Cefixime	2	0	0	, ,	Too Few
Cefodime	0	2	3		Too Few
Cefoperazone	0	0	1		Too Few
Cefoperazone/Sulbactam	0	0	1		Too Few
Cefotaxime	8	0	0		Resistant (A)
Cefoxitin	I	0	1		Too Few
Cefpodoxime	1	0	1		Too Few
Ceftazidime	1	29	80	Intermediate (1/2)	Sensitive (A)
Ceftazidime/Avibactam	0	0	5		Sensitive (A)
Ceftolozane/Tazobactam	0	1	6		Sensitive (A)
Ceftriaxone	2	0	0		Too Few
Cefuroxime	3	0	0		Too Few
Ciprofloxacin	0	33	85	Intermediate (2/2)	Intermediate
Clindamycin	0	0	1		Too Few
Colistin	1	6	17		Sensitive (Y)
Cotrimoxazole	1	0	0		Too Few
Doripenem	0	0	6		Sensitive (A)
Doxycycline	I	0	0		Too Few
Ertapenem	2	0	0		Too Few
Erythromycin	0	0	1		Too Few
Fosfomycin	4	0	0		Too Few
Gentamicin	6	5	80	Sensitive (2/2)	Sensitive (Y)
Imipenem	13	27	57	Intermediate (2/2)	Intermediate

- Target based on 80% agreement or at least 30% more than next common response
 Target requires at least 5 responses or else 'Too Few' is recorded
 Target is based initially on lab's guideline (Y) followed by all guidelines (A) if lab's guideline does not fulfil criteria. If neither of these are met then target recorded as N/A
- Participant responses are recorded for each antibiotic
- Participant responses from an incorrectly or partially identified organism are not included in totals

Scoring

- If target is Sensitive
- Response of sensitive = 2 Response of intermediate = 1 Response of resistant = 0
- If target is Resistant Response of sensitive = -1
- Response of intermediate = 1 Response of resistant = 2

- If target is Intermediate
- Response of sensitive = 1 Response of intermediate = 2
- No scoring possible if target is N/A or Too Few

ANTIMICROBIAL SUSCEPTIBILITY TESTING

Antimicrobial susceptability testing table details all reported antibiotics for current sample and AST response.

Tigecyclin	0	7 0	0	Intermediate (2/2)	Intermediate (A Resistant (A)
Tobramycin	1	0	53	Sensitive (2/2)	Sensitive (Y)
Trimethoprim/Sulfamethoxazole	6	2	1	(2.2)	N/A
Vancomycin	0	0	I		Too Few
Your Score	19 out of	20	95.0%		
Your Guideline: EUCAST	350 out 0	of 456	76.8%		
All Guidelines	1755 out	of 2048	85.7%		

• A total score for the participants responses that had targets is provided for the participant

Your Score

• A total score for all antibiotics that had targets is provided for

Your Guideline All Guidelines

Cefepime

Guideline	Resistant	Intermediate	Sensitive	% Agreement	
CLSI	0	0	31	100.0%	
EUCAST	1	16	7	66.7%	
Unspecified	I	9	30	75.0%	

LT033 RIQAS Explained FEB24.indd 38 25/04/2024 09:29

[•] For each antibiotic that has a target assigned, a breakdown of the responses per guideline is provided

MONITORING EQA PERFORMANCE

Each EQA report should be evaluated and any poor performance investigated. A step by step approach should be adopted consisting of the following three steps:

1. Investigate the source of the problem

In order to identify the source of the problem, it is useful to be aware of the most common causes of poor EQA performance. Errors can occur at any stage of the testing process; however, EQA is most concerned with detecting analytical errors i.e. errors that occur during the analysis of the sample.

Most analytical errors can be easily divided into three main areas; clerical errors, systematic errors and random errors. Systematic errors result in inaccurate results that consistently show a positive or negative bias. Random errors, on the other hand, affect precision and result in fluctuations in either direction.

It may be possible that, after extensive investigations, the root cause of the poor performance cannot be established. Poor performance for a single sample could be attributed to random error. If poor performance has been noted for several samples, a systematic error is the most likely cause and the analytical process should be reviewed.

Clerical errors

- Transcription errors
- Incorrect units used
- Incorrect sample tested
- Incorrect method classification
- Calculation/conversion error

Systematic errors

- Sample/Reagent prep/handling
- Reagent/calibrator/standardisation change
- Instrument/reagent/calibrator fault
- Inexperienced operators
- Reagent deterioration
- Inappropriate method

Random errors

- Bubbles in reagent
- Bubbles in reagent/sample pipette
- Temperature fluctuations
- Poor pipetting technique
- Poor operator technique

The flowchart (page 29) is designed to help you investigate any apparent poor performance.

2. Implement corrective actions

Some errors can be readily recognised as simple clerical errors and easily corrected. If there is evidence of systematic or random error however more detailed corrective actions must be taken.

Systematic Error

In the event of a systematic error, the following suggested actions may help to resolve the problem:

Perform instrument maintenance

• Recalibrate instrument

- Review reagent/sample storage
- Prepare fresh reagents & re-run sample

Check pipettes

Perform staff training

Random Error

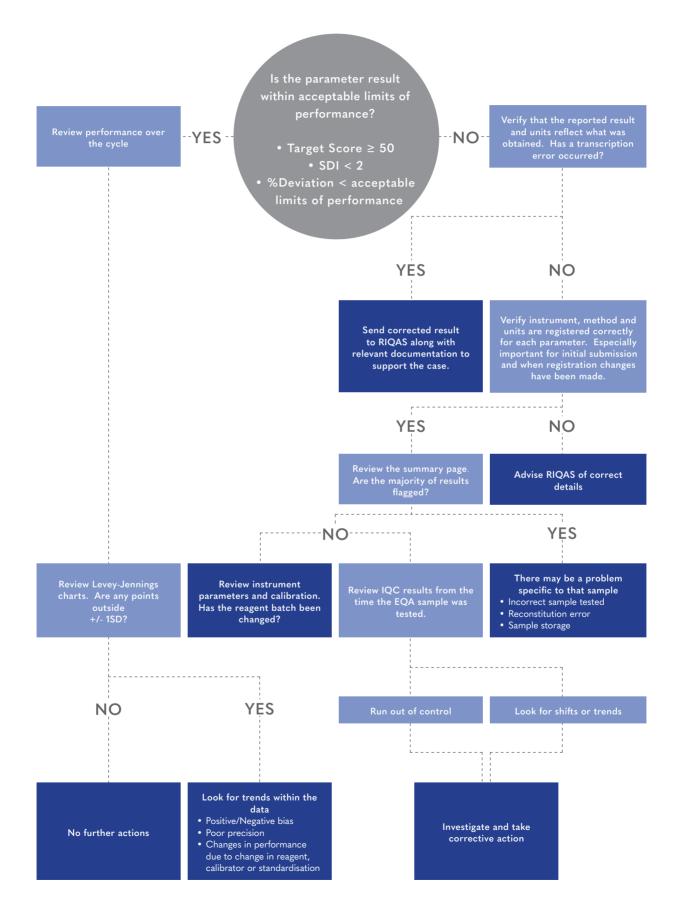
If all possible causes have been excluded, a single unacceptable result is most likely due to random error. Rerun the sample; if the result of repeat analysis is acceptable then corrective action is not required. If the issue persists, investigate possible sources of systematic error.

3. Check the effectiveness of corrective actions

The effectiveness or impact of any corrective actions taken can be assessed by continuing to monitor analytical performance over time.

39

MONITORING EQA PERFORMANCE


A checklist similar to the one below is extremely useful when investigating poor EQA performance and may help you to determine the root cause of the problem and initiate corrective actions.

Cycle Number:		Sample Number:	
Analysis Date:		Analyte:	
Mean for Comparison:		Lab Result: SDI: SDI: %Dev;	•••••••••••
1. Specimen Handling			
a. Samples received in good condition		e. Error due to imprecision; check IQC in terms of	
b. Samples stored/prepared appropriately		%Deviation compared to deviation observed in EQA	M M
c. Integrity of the sample is acceptable		f. IQC target correctly assigned	Y N
2. Clerical		5. Calibration	
a. Correct result entered	N	a. Date of last calibration	
b. Correct use of decimal point and units	N	b. Calibration frequency acceptable	V N
c. Calculations, if any, performed correctly		c. Last calibration acceptable	Y N
(even if automated)			
d. Conversion factors applied to results before submission		6. Instrument	
		a. Daily maintenance performed on date of sample analysis	M M
3. Registration and Mean for Comparison		b. Special maintenance performed prior to sample analysis	W W
a. Registered in the correct method/instrument group		c. Instrument operated correctly	W W
b. Changed method or instrument without advising RIQAS		d. Operator fully trained	W W
c. Peer Group changed due to the number of participants		7. D	
returning results e.g. from method to instrument d. An obvious bias between method and instrument means		7. Reagents	•
d. An obvious bias between method and instrument means (check histogram and stats sections)		a. Reagents prepared and stored correctly	
(check histogram and stats sections)		b. Reagents within open vial stability	
4. Internal Quality Control		8. EQA sample	
a. %Deviation of IQC (at similar conc to that of EQA) on	_	a. Initial value	
sample analysis date acceptable		b. Re-run value	
b. Shift in IQC in the periods just before and after EQA		c. Issue observed in previous EQA samples at a similar	
sample analysis		concentration (check %Deviation by concentration and	
c. Trends in IQC in the periods before and after EQA		Levey Jennings charts)	W W
sample analysis		d. All parameters affected (to the same extent) - possible	
d. Random IQC variation on sample analysis date		reconstitution error (check %Deviation on summary pages)	W W
Conclusion:		Remedial Action:	
Conclusion		Remedial Action:	
	,		
Lab Manager: Date:		Lab Director: Date:	

LT033 RIQAS Explained FEB24.indd 40 25/04/2024 09:29

MONITORING EQA PERFORMANCE

The flow chart below can be used to help identify a possible root cause for poor EQA performance.

41

Ammonia/Ethanol Programme With target scoring

RQ9164 (2 ml) 2 Parameters

Samples every month, 1 x 12 month cycle, 12 month subscription

Anti-Müllerian Hormone (AMH) Programme+ 👢

Samples every month, 1 x 12 month cycle, 12 month subscription

Anti-Müllerian Hormone (AMH)

Anti-TSH Receptor Programme+ With target scoring

Samples every month, 1 x 12 month cycle, 12 month subscription

Anti-TSH Receptor (TRAb)

Blood Gas Programme With target scoring

RQ9134/A (1.8 ml) RQ9134 (1.8 ml) First registered instrument Subsequent instruments 11 Parameters

Samples every month, 1 x 12 month cycle, 12 month subscription

Bicarbonate CO₂(Total) pH pO, Na+ CI-Lactate рСО,

BNP Programme+ With target scoring

RQ9165 (1 ml)

1 Parameter Samples every month, 1 x 12 month cycle, 12 month subscription

Cardiac Programme With target scoring

RQ9127/a (1 ml) RQ9127/b (1 ml) RQ9186 (1 ml) 2 Parameters only (choose from 7) Full 7 Parameters
Samples every 2 weeks, 2 x 6 monthly cycles, 12 month subscription Full 7 Parameters Samples every month, 1 x 12 monthly cycle, 12 month subscription

CK-MB (Mass) CK. Total Myoglobin Troponin T CK-MB (Activity) Homocysteine Troponin I

Cardiac Plus Programme With target scoring

RQ9190 (3 ml)

Samples every month, 1 x 12 month cycle, 12 month subscription

Troponin I CK-MB Activity Myoglobin NT proBNP CK-MB Mass Homocysteine

Cerebrospinal Fluid Programme + With target scoring

Samples every month, 1 x 12 month cycle, 12 month subscription

Albumin Glucose Lactate Sodium Protein (Total) Chloride lgG

PURPLE = The only parameters available on RO9135/a

+ = Not accredited

* = Pilot study ongoing

42

Coagulation Programme With target scoring

RQ9135/b (1 ml) RQ9135/a (1 ml) 5 Selected parameters only + 1 pilot Full 16 Parameters + 1 pi (aPTT, PT, TT, Fibrinogen, Antithrombin III) Samples every month, 1 x 12 month cycle, 12 month subscription Full 16 Parameters + 1 pilot

D-dimer* Factor IX PT (including INR) Factor II Factor X Factor XI Factor V Fibrinogen Factor VII Factor XII Antithrombin III Factor VIII Plasminogen Protein C Protein S

CO-Oximetry Programme+

Carboxyhaemoglobin (COHb / HbCO) Methaemoglobin (MetHb) Oxygen Saturation (sO2 / Vol O2) Total Haemoglobin (tHb) Deoxyhaemoglobin (HHb) Oxygen Content (O2CT) Oxyhaemoglobin (O2Hb / HbO2)

CYFRA 21-1 Programme+

RO9175 (1 ml) 1 Parameter

Samples every month, 1 x 12 month cycle, 12 month subscription

CYFRA 21-1 (Cytokeratin 19)

Cytokines Programme+

RO9195 (1 ml)

1 Parameter + 11 pilots Samples every month, 1 x 12 month cycle, 12 month subscription

Epidermal Growth Factor (EGF)* Interleukin - 4 (IL-4)* Interferon gamma (INF-Y)* Vascular Endothelial Growth Factor Interleukin – 1 alpha (IL-1a) Interleukin - 6 (IL-6) Monocyte Chemoattractant Protein -1 (VEGF)* Interleukin – 1 beta (IL-1β)*
Interleukin – 2 (IL-2)* Interleukin - 8 (IL-8)* (MCP-1)* Tumour Necrosis Factor alpha (TNF-α)* Interleukin - 10 (IL-10)³

ESR Programme+

2 samples per quarterly distribution, 1 x 12 month cycle, 12 month subcription

ESR (Erythrocyte Sedimentation Rate)

General Clinical Chemistry Programme With target scoring

RQ9112/a (5 ml) RQ9112/b (5 ml) RQ9112/c (5 ml) RQ9128 (5ml) Full 56 Parameters Samples every month, 1 x 12 monthly cycle, 12 month subscription Samples every 2 weeks, 2 x 6 monthly cycles, 12 month subscription, reference method values

ACE (Angiotensin Converting Enzyme) Calcium, Adjusted HBDH Protein (Total) Acid Phosphatase (Prostatic) HDL-Cholesterol PSA Calcium (Ionised) Chloride Sodium Acid Phosphatase (Total) Iron Albumin Cholesterol Lactate TIBC Alkaline Phosphatase LD (LDH) T₃ (Free) Cholinesterase T₃ (Total) T₄ (Free) ALT (ALAT) CK, Total (CPK) LDL-Cholesterol Amylase (Pancreatic) Copper Lipase Amylase (Total) AST (ASAT) T₄ (Total) Triglycerides TSH Creatinine Lithium D-3-Hvdroxvbutvrate Magnesium Bicarbonate eGFR (estimated glomerular filtration rate) Bile Acids Fructosamine Non-HDL Cholesterol UIBC Bilirubin (Direct) γGT GLDH Osmolality Phosphate (Inorganic) Urea Bilirubin (Total) Uric Acid

Glycated Haemoglobin Programme (HbA1c) With target scoring

RQ9129 (0.5ml)

2 Parameters

Samples every month, 1 x 12 month cycle, 12 month subscription

HbA1c Total Haemoglobin

PURPLE = The only parameters available on RO9135/a

+ = Not accredited

* = Pilot study ongoing

43

LT033 RIQAS Explained FEB24.indd 43 25/04/2024 09:29

Haematology Programme With target scoring

RQ9118 (2 ml) RQ9140 (2ml) 11 Parameters Samples every month, 1 x 12 monthly cycle, 12 month subscription Samples every 2 weeks, 2 x 6 monthly cycles, 12 month subscription

Mean Cell Haemoglobin Concentration Mean Platelet Volume (MPV) Red Blood Cell Count (RBC) Red Cell Distribution Width (RDW) Haemoglobin (Hb) Platelets (PLT) Mean Cell Volume (MCV) Total White Blood Cell Count (WBC) Mean Cell Haemoglobin (MCH) Plateletcrit (PCT)

Human Urine Programme With target scoring

RQ9185 (10ml) 25 Parameters Samples every 2 weeks, 2 x 6 monthly cycles, 12 month subscription Samples every month, 1 x 12 monthly cycle, 12 month subscription

Creatinine Normetanephrine Protein (Total) Albumin/Microalbumin Magnesium Sodium Amylase Calcium Epinephrine Osmolality Urea Glucose Oxalate Uric Acid Phosphate (Inorganic) Chloride Metanephrine VMΔ 5-HIAA Copper Norepinephrine Potassium Cortisol

Immunoassay Programme With target scoring

RQ9130 (5 ml) RQ9125/a (5 ml) RQ9125/b (5 ml) RQ9125/c (5 ml) 4 Parameters only + 2 pilots 13 Parameters only + 2 pilots Full 49 Parameters + 2 pilots Full 49 Parameters + 2 pilots Samples every month, 1 x 12 month cycle, 12 month subscription RQ9130) Samples every two weeks, 2 x 6 monthly cycles, 12 month subscription (RQ9125/a, RQ9125/b, RQ9125/c)

DHEA-Sulphate 17-OH-Progesterone T₄ (Free) T₄ (Total) Testosterone (Free)* ΔFP DHEA Unconjugated Paracetamol Aldosterone Phenobarbital Digoxin Amikacin Ferritin Phenytoin Testosterone (Total) Androstenedione Folate Progesterone Theophylline FSH β -2-Microglobulin Prolactin Thyroglobulin Gentamicin PSA (Free) GH PSA (Total) Valproic Acid CA19-9 hCG PTH Vancomycin Vitamin B12 Carbamazepine lgE 1-25-(OH)₂-Vitamin D* 25-OH-Vitamin D CEA SHBG T_3 (Free) T_3 (Total) LH Cortisol C-Peptide

Immunoassay Speciality 1 Programme With target scoring

RQ9141 (2 ml) 9 Parameters + 1 pilot Samples every month, 1 x 12 month cycle, 12 month subscription

1-25-(OH)₂-Vitamin D* Anti-TG Osteocalcin Insulin Procalcitonin 25-OH-Vitamin D

Immunoassay Speciality 2 Programme With target scoring

IGF-1

RO9142 (1 ml)

Samples every month, 1 x 12 month cycle, 12 month subscription Calcitonin Procalcitonin Plasma Renin Activity Renin (Direct Concentration)

Immunosuppressant Programme+

RQ9159 (2 ml) Samples every month, 1 x 12 month cycle, 12 month subscription, reference method values

Tacrolimus

Lipid Programme With target scoring

RQ9126/b (3 ml) 3 Parameters only (choose from 7) **Full 7 Parameters** Samples every 2 weeks, 2 x 6 monthly cycles, 12 month subscription

Cholesterol (Total) LDL-Cholesterol Triglycerides Apolipoprotein B HDI -Cholesterol Lipoprotein (a)

= Liquid ready-to-use samples

C-Peptide

5 Parameters

PURPLE = The only parameters available on RO9135/a

+ = Not accredited

* = Pilot study ongoing

Maternal Screening Programme With target scoring

PAPP-A

RQ9137 (1 ml)

6 Parameters Samples every month, 1 x 12 month cycle, 12 month subscription

Total hCG

free β-hCG

Unconjugated Oestriol

Microbiology (Bacterial Identification) Programme+

1 strain (complete with case study)

Samples every 2 months, 1 x 12 month cycles, 12 month subscription

1 strain complete with case study. Identification of the micro-organisms can be made at Gram positive / negative, Genus and Species level. Antimicrobial Susceptibility Testing on identified strain

Antimicrobial Susceptibility Testing

Strain Identification

Neonatal Bilirubin Programme+

RO9191 (3 ml)

Samples every month, 1 x 12 month cycle, 12 month subscription

Psychiatric Drugs Programme

Serology (Anti-SARS-CoV-2) Programme+

RO9193 (0.5 ml)

3 Parameters

Samples every month, 1 x 12 month cycle, 12 month subscription

Total Antibodies

Serology (EBV) Programme+

Samples every month, 1 x 12 month cycle, 12 month subscription, Quantitative and Qualitative results

Anti-EBV VCA IgG Anti-EBNA IgG Anti-EBV VCA IgM

Serology (HIV-Hepatitis) Programme+

10 Parameters + 6 pilots

Samples every month, 1 x 12 month cycle, 12 month subscription, Quantitative and Qualitative results

Anti-HIV-1 Anti-CMV (Total) Anti-HBc IgM* Anti-HTLV II Anti-HAV IgM* Anti-HBe (Total)* Anti-HIV-2 Anti-HTLV combined Anti-HBs (Total)* Anti-HCV Anti-HAV (Total) HBsAg Anti-HIV combined Anti-HTLV I

Serology (Syphilis) Programme+

Samples every month, 1 x 12 month cycle, 12 month subscription, Quantitative and Qualitative results

Syphilis (Methods available include immunoassay RPR, VDRL and TPHA)

Serology (ToRCH) Programme+

RQ9152 (1 ml)

12 Parameters + 3 pilots

Samples every month, 1 x 12 month cycle, 12 month subscription, Quantitative and Qualitative results

Anti-HSV2 lgG Anti-CMV lgG Anti-Measles IgG* Anti-Toxoplasma IgG Anti-Mumps IgG* Anti-CMV IgM Anti-HSV2 IgM Anti-Toxoplasma IgM Anti-HSV1/2 IgG Anti-HSV1/2 IgM Anti-HSV1 lgG Anti-Rubella IgG Anti-VZV lgG* Anti-HSV1 IgM Anti-Rubella IgM

= Lyophilised samples

PURPLE = The only parameters available on RO9135/a

+ = Not accredited

* = Pilot study ongoing

45

LT033 RIQAS Explained FEB24.indd 45 25/04/2024 09:29

Serum Indices Programme+

RQ9194 (1 ml) 3 Indices Assessments

25 Chemistry Parameters Samples Bi-Monthly, 2 x 9 samples, 12 month subscription

RQ9194/A (1 ml)

Indices Assessment (Quantitative and Semi-Quantitative)

Parameter Assessment (Quantitative)

ΔΙΡ Cholesterol ALT CK NAC AST Creatinine Bilirubin (Direct) GGT Bilirubin (Total) Glucose HDL Calcium

Lactate Sodium LDH Triglycerides Lipase Urea Magnesium Uric Acid Phosphate Potassium

Specific Proteins Programme With target scoring

Protein (Total)

RQ9187 (1ml)

Samples every 2 weeks, 2 x 6 monthly cycles, 12 month subscription

Samples every month, 1 x 12 monthly cycle, 12 month subscription

β-2-Microglobulin Albumin Ceruloplasmin α-1-Acid glycoprotein Complement C. α-1-Antitrypsin Complement C α -2-Macroglobulin C-Reactive Protein Anti Streptolysin O Ferritin Haptoglobin

lgE lgG Kappa Light Chain (Free) Kappa Light Chain (Total) Lambda Light Chain (Free)

Lambda Light Chain (Total) Prealbumin (Transthyretin) Retinol Binding Protein Rheumatoid Factor Transferrin

Sweat Testing Programme+

Samples every month, 1 x 12 month cycle, 12 month subscription

Conductivity

Samples every 2 weeks, 2 x 6 monthly cycles, 12 month subscription, Weighed-in values

Therapeutic Drugs Programme With target scoring

Amikacin Ethosuximide Caffeine Gentamicin Carbamazepine Lithium Ciclosporin . Methotrexate

Phenobarbital Phenytoin Primidone Salicylic Acid Paracetamol (Acetaminophen) Theophylline

Valproic Acid Vancomycin

Urinalysis Programme With scoring

RO9138 (12 ml)

14 Parameters

Samples every 2 months, 1 x 12 month cycle, 12 month subscription

Galactose Glucose hCG Creatinine Ketones

Specific Gravity Urobilinogen

Urine Toxicology Programme+

RQ9139 (5 ml) 20 Parameters

Samples every month, 1 x 12 month cycle, 12 month subscription

d-Methamphetamine Benzoylecgonine Buprenorphine EDDP Cannabinoids (THC) Ethanol Cotinine Free Morphine Creatinine Lorazepam d-Amphetamine LSD

MDMA Methadone Nortriptyline Norpropoxyphene Oxazepam Phencyclidine

Leucocytes

Nitrite

Protein

рΗ

Phenobarbital Secobarbital

Whilst every attempt is made to ensure that information is accurate and up-to-date, some information is subject to change, please contact RIQAS for current details.

PURPLE = The only parameters available on RO9135/a

+ = Not accredited

* = Pilot study ongoing

46

PURF

Pilot st	ccredited tudy ongoing The only parameters available on RQ9135/a	Ammonia / Ethanol	Anti-Mullerian Hormone (AMH) +	Anti-TSH Receptor +	Blood Gas	BNP +	Cardiac	Cardiac Plus	Cerebrospinal Fluid +	Coagulation	CO-Oximetry +	CYFRA 21-1 +	Cytokines +	ESR +	General Clinical Chemistry	HbA1c	Haematology	Human Urine	Immunoassay
#	1-25-(OH) ₂ -Vitamin D*																		Χ
	17-OH-Progesterone																		X
	25-OH-Vitamin D 5-HIAA																	Х	Х
	α-1-Acid Glycoprotein																	Х	
Α	α-1-Actid Glycoprotein																		
	α-2-Macroglobulin																		
	ACE (Angiotensin Converting Enzyme)														Χ				
	Acid Phosphatase (Prostatic)														Х				
	Acid Phosphatase (Total)														Х				
	ACR																	Χ	
	ACTH																		Χ
	AFP																		Χ
	Albumin								Х						Χ			Χ	
	Aldosterone																		Х
	Alkaline Phosphatase														Χ				
	ALT																		
	ALT (ALAT)														Χ				
	Amikacin																		Χ
	Ammonia	Х																	
	Amylase (Pancreatic)														Χ				
	Amylase (Total)														Χ			Χ	
	Androstenedione																		Χ
	Anti Streptolysin O (ASO)																		
	Anti-CMV																		
	Anti-CMV IgG																		
	Anti-CMV IgM Anti-EBNA IgG																		
	Anti-EBIV VCA IgG																		
	Anti-EBV VCA IgM																		
	Anti-HAV IgM*																		
	Anti-HAV (Total)*																		
	Anti-HBc																		
	Anti-HBc IgM*																		
	Anti-HBe (Total)*																		
	Anti-HBs (Total)*																		
	Anti-HCV																		
	Anti-HIV-1																		
	Anti-HIV-1 & 2 Combined																		
	Anti-HIV-2																		
	Anti-HSV-1 & 2 IgG Combined																		
	Anti-HSV-1 & 2 IgM Combined																		
	Anti-HSV1 IgG																		
	Anti-HSV1 IgM																		
	Anti-HSV2 IgG																		
	Anti-HSV2 IgM																		
	Anti-HTLV-1 & 2 Combined																		
	Anti-HTLV-I Anti-HTLV-II																		
	Anti-Measles IgG*																		
	Anti-Measies igG* Antimicrobial Susceptibility Testing																		
	7 with the robial ousceptibility resting																		

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

LT033 RIQAS Explained FEB24.indd 47

_	
	Immunoassay Speciality I
	Immunoassay Speciality 2
	Immunosuppressant +
	Lipid
	Maternal Screening
	Microbiology (Bacterial Idenitfication) +
	Neonatal Bilirubin +
	Serology (Anti-SARS-CoV-2) +
	Serology (EBV) +
	Serology (HIV / Hepatitis) +
	Serology (Syphilis) +
	Serology (ToRCH) +
	Serum Indices +
	Specific Proteins
	Sweat Testing +
	Therapeutic Drug
	Urinalysis
	Urine Toxicology +

- + = Not accredited
- * = Pilot study ongoing

PURPLE = The only parameters available on RQ9135/a

Immuno	Immuno	Immune	Lipid	Matern	Microbi	Neonat	Serolog	Serolog	Serolog	Serolog	Serolog	Serum	Specific	Sweat	Therap	Urinaly	Urine T		
Х																		1-25-(OH) ₂ -Vitamin D*	#
																		17-OH-Progesterone	
X																		25-OH-Vitamin D	
																		5-HIAA	
													Х					α-1-Acid Glycoprotein	Α
													Х					α-1-Antitryspin	
													Х					α-2-Macroglobulin	
																		ACE (Angiotensin Converting Enzyme)	
																		Acid Phosphatase (Prostatic)	
																		Acid Phosphatase (Total)	
																		ACR	
																		ACTH	
				Х									Х					AFP	
													Х			Χ		Albumin	
																		Aldosterone	
												Х						Alkaline Phosphatase	
												Х						ALT	
																		ALT (ALAT)	
															Х			Amikacin	
																		Ammonia	
																		Amylase (Pancreatic)	
																		Amylase (Total)	
																		Androstenedione	
													Х					Anti Streptolysin O (ASO)	
									Х									Anti-CMV	
											Χ							Anti-CMV IgG	
											Χ							Anti-CMV IgM	
								Χ										Anti-EBNA IgG	
								Χ										Anti-EBV VCA IgG	
								Χ										Anti-EBV VCA IgM	
									Χ									Anti-HAV IgM*	
									Χ									Anti-HAV (Total)*	
									Χ									Anti-HBc	
									Χ									Anti-HBc IgM*	
									Χ									Anti-HBe (Total)*	
									Χ									Anti-HBs (Total)*	
									Χ									Anti-HCV	
									Χ									Anti-HIV-1	
									Х									Anti-HIV-1 & 2 Combined	
									Χ									Anti-HIV-2	
											Χ							Anti-HSV-1 & 2 IgG Combined	
											Χ							Anti-HSV-1 & 2 IgM Combined	
											Χ							Anti-HSV1 IgG	
											Χ							Anti-HSV1 IgM	
											Χ							Anti-HSV2 IgG	
											Χ							Anti-HSV2 IgM	
									Χ									Anti-HTLV-1 & 2 Combined	
									Χ									Anti-HTLV-I	
									Χ									Anti-HTLV-II	
											Χ							Anti-Measles IgG*	
					Χ													Antimicrobial Susceptibility Testing	

 $^{^{\}Delta}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

+ =

PURF

Not ac	credited		AMH) +												Ž.				
Pilot stu	idy ongoing		one (,						+						mist				
	The only parameters available on RQ9135/a	Ammonia / Ethanol	Anti-Mullerian Hormone (AMH) +	Anti-TSH Receptor +	Blood Gas	BNP +	Cardiac	Cardiac Plus	Cerebrospinal Fluid +	Coagulation	CO-Oximetry +	CYFRA 21-1 +	Cytokines +	ESR +	General Clinical Chemistry	HbA1c	Haematology	Human Urine	Immunoassay
Α	Anti-Müllerian Hormone (AMH)		Х																
	Anti-Mumps IgG*																		
	Anti-Rubella IgG Anti-Rubella IgM																		
	Anti-Rubella IgM Anti-SARS-COV2 IgG																		
	Anti-SARS-COV2 IgM																		
	Anti-SARS-COV2 Igiti																		
	Anti-TG																		
	Antithrombin III									Х									
	Anti-Toxoplasma IgG																		
	Anti-Toxoplasma IgM																		
	Anti-TPO																		
	Anti-TSH Receptor (TRAb)			Х															
	Anti-VZV IgG*																		
	Apolipoprotein Al																		
	Apolipoprotein B																		
	aPTT									Х									
	AST																		
	AST (ASAT)														Χ				
В	β-2-Microglobulin																		Χ
	Benzoylecgonine																		
	Bicarbonate				Χ										Χ				
	Bile Acids														Χ				
	Bilirubin (Direct)														Χ				
	Bilirubin (Total)														Χ				
	Blood																		
	BNP					Χ													
	Buprenorphine																		
С	CA15-3																		Х
	CA19-9																		X
	CA125																		Χ
	Caffeine Calcitonin																		
	Calcium														Х			Х	
	Calcium, Adjusted														X			^	
	Calcium (Ionised)				Х										X				
	Cannabinoids (THC)				,,														
	Carbamazepine																		Χ
	Carboxyhaemoglobin (COHb / HbCO)										Χ								
	CEA																		Χ
	Ceruloplasmin																		
	Chloride				Χ				Χ						Χ			Χ	
	Cholesterol (Total)														Χ				
	Cholinesterase														Χ				
	Ciclosporin																		
	CK, Total						Χ	Χ							Χ				
	CK-MB (Activity)						Χ	Χ											
	CK-MB (Mass)						Χ	Χ											
	CK NAC																		
	CO2, Total				Χ														
	Complement C ₃																		

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

Immunoassay Speciality 1
Immunoassay Speciality 2
Immunosuppressant +
Lipid
Maternal Screening
Microbiology (Bacterial Idenitfication) +
Neonatal Bilirubin +
Serology (Anti-SARS-CoV-2) +
Serology (EBV) +
Serology (HIV / Hepatitis) +
Serology (Syphilis) +
Serology (ToRCH) +
Serum Indices +
Specific Proteins
Sweat Testing +
Therapeutic Drug
Urinalysis
Urine Toxicology +
/0

- + = Not accredited
- $\star = Pilot study ongoing$

PURPLE = The only parameters available on RQ9135/a

Immunoass	Immunoass	Insounwul	Lipid	Maternal S	Microbiolog	Neonatal B	Serology (A	Serology (F	Serology (F	Serology (S	Serology (7	Serum Indi	Specific Pr	Sweat Test	Therapeuti	Urinalysis	Urine Toxid		
																		Anti-Müllerian Hormone (AMH)	Α
											Χ							Anti-Mumps IgG*	1
											Х							Anti-Rubella IgG	
											Х							Anti-Rubella IgM	
							Х											Anti-SARS-COV2 IgG	
							Х											Anti-SARS-COV2 IgM	
							Х											Anti-SARS-COV2 Total	
Х																		Anti-TG	
													Х					Antithrombin III	
											Χ							Anti-Toxoplasma IgG	
											Х							Anti-Toxoplasma IgM	
Х																		Anti-TPO	
																		Anti-TSH Receptor (TRAb)	
											Χ							Anti-VZV IgG*	
			Χ															Apolipoprotein Al	
			Х															Apolipoprotein B	
			- 1															aPTT	
												Χ						AST	
																		AST (ASAT)	
													Χ					β-2-Microglobulin	В
																		Benzoylecgonine	В
																		Bicarbonate	
																		Bile Acids	
						Х						Х						Bilirubin (Direct)	
						X						X				Х		Bilirubin (Total)	
						^						^				X		Blood	
																^		BNP	
																	V	Buprenorphine	
																	^	CA15-3	
																		CA19-9	С
																		CA19-9	
															Х			Caffeine	
	Χ														^			Calcitonin	
	^											Х						Calcium	
												^							
																		Calcium, Adjusted Calcium (Ionised)	
																	V		
															V		٨	Cannabinoids (THC)	
															Х			Carbany bearragh in (COUD / UbCO)	
																		Carboxyhaemoglobin (COHb / HbCO) CEA	
													V						
												V	X	V				Ceruloplasmin	
			V									X		Х				Chalanta val (Tatal)	
			Χ									Х						Chalingstone	
		V													V			Cial an ania	
		Χ													Х			Ciclosporin	
																		CK, Total	
																		CK-MB (Activity)	
												\ <u>'</u>						CK-MB (Mass)	
												Х						CK NAC	
																		CO2, Total	
													Χ					Complement C ₃	

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

PUR

	accredited		mone (AMH) +	+					+ p						hemistry				
JRPLE =	The only parameters available on RQ9135/a	Ammonia / Ethanol	Anti-Mullerian Hormone (AMH) +	Anti-TSH Receptor +	Blood Gas	BNP +	Cardiac	Cardiac Plus	Cerebrospinal Fluid +	Coagulation	CO-Oximetry +	CYFRA 21-1 +	Cytokines +	ESR +	General Clinical Chemistry	HbA1c	Haematology	Human Urine	Immunoassay
С	Complement C ₄																		
	Conductivity																		
	Copper														Χ			Х	
	Cortisol																	Χ	Χ
	Cotinine																		
	C-Peptide C-Reactive Protein (CRP)																		X
	C-Reactive Protein (CRP) Creatinine														Х			Χ	
	CYFRA 21-1 (Cytokeratin 19)											Х			^			^	
D	D-3-Hydroxybutyrate											^			Х				
	d-Amphetamine																		
	D-Dimer* ^A							Χ		Χ									
	Deoxyhaemoglobin (HHb)										Χ								
	DHEA Unconjugated																		Χ
	DHEA-Sulphate																		Χ
	Digoxin							Χ											Χ
	d-Methamphetamine																		
	Dopamine																	Χ	
E	EDDP																		
	eGFR (estimated glomerular filtration rate)												.,		Χ				
	Epidermal Growth Factor (EGF)*												Χ						
	Epinephrine ESR													Х				Х	
	Ethanol	Х												^					
	Ethosuximide																		
	Everolimus																		
F	Factor II									Χ									
	Factor IX									Χ									
	Factor V									Χ									
	Factor VII									Χ									
	Factor VIII									Χ									
	Factor X									Χ									
	Factor XI									Χ									
	Factor XII									Χ									
	Ferritin									V									Χ
	Fibrinogen Folate									Χ									Х
	Free Morphine																		^
	free β-hCG																		
	Fructosamine														Χ				
	FSH																		Χ
G	γ-GT														Χ				
	Galactose																		
	Gastrin																		
	Gentamicin																		Χ
	Growth Hormone (GH)																		Χ
	GLDH														Х				
	Glucose				Χ				Χ						Χ			Χ	
н	Haematocrit (HCT)																X		
	Haemoglobin (Hb) Total Haemoglobin (tHb)										Х					Х	Х		
	Total Haemoglobin (thib)										- /					7			

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

LT033 RIQAS Explained FEB24.indd 51

Immunoassay Speciality 2 Immunosuppressant + Lipid Maternal Screening Microbiology (Bacterial Ideniffic Neonatal Bilirubin + Serology (Anti-SARS-CoV-2) Serology (Anti-SARS-CoV-2) Serology (FBV) + Serology (FBV) + Serology (Syphilis) + Serology (ToRCH) + Serology (ToRCH) + Serology (ToRCH) + Shecific Proteins Sweat Testing + Therapeutic Drug	Immunoassay speciality I
	, 2
Lipid Maternal Screening Microbiology (Bacterial Idenitfic Neonatal Bilirubin + Serology (Anti-SARS-CoV-2) Serology (EBV) + Serology (HIV / Hepatitis) + Serology (ToRCH) + Serology (ToRCH) + Serology (ToRCH) + Serum Indices + Serum Indices + Therapeutic Proteins	
Neonatal Bilirubin + Serology (Anti-SARS-CoV-2) Serology (EBV) + Serology (HIV / Hepatitis) + Serology (Syphilis) + Serology (ToRCH) + Serum Indices + Specific Proteins Sweat Testing + Therapeutic Drug	enitfication) +
Serology (Anti-SARS-CoV-2) Serology (EBV) + Serology (HIV / Hepatitis) + Serology (Syphilis) + Serology (ToRCH) + Serum Indices + Specific Proteins Sweat Testing + Therapeutic Drug	
Serology (EBV) + Serology (HIV / Hepatitis) Serology (Syphilis) + Serology (ToRCH) + Serum Indices + Specific Proteins Sweat Testing + Therapeutic Drug	oV-2) +
Serology (HIV / Hepatitis) Serology (Syphilis) + Serology (ToRCH) + Serum Indices + Specific Proteins Sweat Testing + Therapeutic Drug	
Sweat Testing + Therapeutic Drug	
Therapeutic Drug	
Urinalysis	
Urine Toxicology +	

- + = Not accredited
- $\star = Pilot study ongoing$

PURPLE = The only parameters available on RQ9135/a

X	Immunoass	Immunoass	lmmunosup	Lipid	Maternal So	Microbiology	Neonatal Bi	Serology (A	Serology (E	Serology (H	Serology (S	Serology (T	Serum Indi	Specific Pro	Sweat Testi	Therapeution	Urinalysis	Urine Toxic		
																			Complement C.	С
Copper Cortisol															Х				·	
																			* *	
X																		X		
X	Y																			1
X														Y					·	
CYFEA 21.1 (Cytokeratin 19)													V	^			~	V		
D.3-Hydroxybutyrate													^				^	^		
X																				_
Doimor* Decayha (Hb) DHEA Sulphate DHEA Sulphate DHEA Sulphate DHEA Sulphate Digoxin X d-Methamphetamine Dopamine Dopamine Dopamine Dopamine Dopamine Dopamine Dopamine Effective Epidermal Growth Factor (EGF)* Epimephrine ESR X Ethanol X Ethanol X Ethanol X Ethanol Everolimus Factor II Factor IX Factor IX Factor VII Factor VII Factor VII Factor VII Factor VII Factor X F																				D
Decoyhaemoglobin (HHb) DHEA Uncopigated DHEA-Sulphate Digoxin X Digoxin Ad-Methamphetamine Dopamine X EDDP GER (estimated glomerular filtration rate) Epidermal Growth Factor (EGF)* Epimephrine ESS X Ethanol Ethosuximide Exercimus Factor II Factor II Factor VII Fac																		Х		
DHEA Unconjugated DHEA Sulphate DHEA Sulphate Digoxin																				
X																				
X Dopamine E																				
Dopamine X EDDP GGFR (estimated glomerular filtration rate) Epidermal Growth Factor (EGF)* Factor X Factor XI Factor VII Factor VIII Factor VIII Factor XI																Х			-	
																		Х	d-Methamphetamine	
Company																			Dopamine	
Epidermal Growth Factor (EGF)*																		Χ		E
Epinephrine ESR																			eGFR (estimated glomerular filtration rate)	
SSR																			Epidermal Growth Factor (EGF)*	
X Ethosuximide Everolimus Everolimu																			Epinephrine	
X Ethosuximide Everolimus Everolimu																			ESR	
X																		Х		
X																Χ				
Factor II Factor IX Factor V Factor V Factor VIII Factor X Factor XI Factor XI Factor XI Factor XII Factor XI Factor			Х																	
Factor IX Factor V Factor V Factor V Factor VII Factor VIII Factor X Factor XI Factor XI Factor XII Factor XII Factor XII Foliate Fibrinogen Folate Folate Folate Free β-hCG Fructosamine FSH X Y-GT G G Gastrin G G G G G G G G G																				F
Factor V Factor VII Factor VII Factor VII Factor X Factor X Factor XI Fac																				
Factor VII Factor VIII Factor X Factor X Factor XI Factor XI Factor XII Fibrinogen Folate X Free Morphine Folate Fructosamine Folate Fructosamine Factor XII Fructosamine Factor XI Free β-hCG Fructosamine Factor XI Facto																				1
Factor VIII Factor X Facto																				
Factor X																				
Factor XI Factor XI Factor XI Factor XI Factor XI Factor XI Ferritin Fibrinogen Folate X Free Morphine Folate Fructosamine FSH X Galactose Gastrin X Gentamicin Growth Hormone (GH) GLDH X X X Glucose Haematocrit (HCT) H Haemoglobin (Hb) H H Haemoglobin (Hb) H H Haemoglobin (Hb) H H Haemoglobin (Hb) H H H H H H H H H																				
Factor XII																				
X																				
Fibrinogen Folate X Free Morphine Fructosamine FSH X Galactose X Gastrin X Gentamicin Growth Hormone (GH) GLDH X X Glucose Haematocrit (HCT) Haemoglobin (Hb)														V						
Folate X Free Morphine X Free β-hCG Fructosamine FSH X Galactose X Gastrin X Gentamicin Growth Hormone (GH) GLDH X X X Glucose Haematocrit (HCT) H Haemoglobin (Hb) Haemoglobin														^						
X Free Morphine X Free β-hCG Fructosamine FSH X Galactose X Gastrin X Gentamicin Growth Hormone (GH) GLDH X X Glucose Haematocrit (HCT) H Haemoglobin (Hb)																			0	
X																		V		
Fructosamine																		Х		
FSH Y-GT G					Х															
X γ-GT G																				
X Galactose																				
X													X							G
X Gentamicin Growth Hormone (GH) GLDH Glucose Haematocrit (HCT) H Haemoglobin (Hb) H																	Χ			
Growth Hormone (GH) GLDH		Х																	Gastrin	
GLDH																Χ				
X																			Growth Hormone (GH)	
Haematocrit (HCT) Haemoglobin (Hb)																			GLDH	
Haemoglobin (Hb)													Χ				Χ		Glucose	
Haemoglobin (Hb)																			Haematocrit (HCT)	Н
																			Haemoglobin (Hb)	

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

PUR

= Pilot st	ccredited udy ongoing The only parameters available on RQ9135/a	Ammonia / Ethanol	Anti-Mullerian Hormone (AMH) +	Anti-TSH Receptor +	Blood Gas	BNP +	Cardiac	Cardiac Plus	Cerebrospinal Fluid +	Coagulation	CO-Oximetry +	CYFRA 21-1 +	Cytokines +	ESR +	General Clinical Chemistry	HbA1c	Haematology	Human Urine	Immunoassay
Н	Haemolysis																		
	Haptoglobin																		
	HbA1c															Χ			
	HBsAg																		
	HBDH														Χ				
	hCG																		Χ
	HDL-Cholesterol														Х				
	Homocysteine						Χ	Х											
	hsCRP							Х											
1	Icteric																		
	IgA																		
	IgE																		Χ
	IGF-1																		
	IgG								Х										
	IgM																		
	Inhibin A																		
	Insulin																		Χ
	Interferon gamma (INF-Y)*												Χ						
	Interleukin – 1 alpha (IL-1α)*												Χ						
	Interleukin – 1 beta (IL-1β)*												Х						
	Interleukin – 10 (IL-10)*												Х						
	Interleukin – 2 (IL-2)*												Х						
	Interleukin – 4 (IL-4)*												Χ						
	Interleukin – 6 (IL-6)												Х						
	Interleukin – 8 (IL-8)*												Х						
	Iron														Χ				
K	Kappa Light Chain (Free)																		
	Kappa Light Chain (Total)																		
	Ketones																		
L	Lactate				Х				Χ						Χ				
	Lambda Light Chain (Free)																		
	Lambda Light Chain (Total)																		
	LD (LDH)														Χ				
	LDL-Cholesterol														Х				
	Leucocytes																		
	Lipase														Χ				
	Lipoprotein (a)																		
	Lithium														Χ				
	Lorazepam																		
	LSD																		
	Luteinising Hormone (LH)																		Χ
М	Magnesium														Χ			Χ	
	MDMA																		
	Mean Cell Haemoglobin (MCH)																Χ		
	Mean Cell Haemoglobin Concentration																Х		
	(MCHC)																		
	Mean Cell Volume (MCV)																X		
	Mean Platelet Volume (MPV)																Χ	V	
	Metanephrine																	Χ	
	Methadone										V								
	Methatroyata										Х								
	Methotrexate																		

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

	Immunoassay Speciality 1
	Immunoassay Speciality 2
	Immunosuppressant +
	Lipid
	Maternal Screening
	Microbiology (Bacterial Idenitfication) +
	Neonatal Bilirubin +
	Serology (Anti-SARS-CoV-2) +
	Serology (EBV) +
	Serology (HIV / Hepatitis) +
	Serology (Syphilis) +
	Serology (ToRCH) +
V	Serum Indices +
	Specific Proteins
	Sweat Testing +
	Therapeutic Drug
	Urinalysis
	Urine Toxicology +

- + = Not accredited
- * = Pilot study ongoing

PURPLE = The only parameters available on RQ9135/a

Immunoassay	Immunoassay	ıddnsounwul	Lipid	Maternal Scr	Microbiology (Neonatal Bilir	Serology (Ant	Serology (EB\	Serology (HIV	Serology (Syp	Serology (ToF	Serum Indice	Specific Prote	Sweat Testing	Therapeutic [Urinalysis	Urine Toxicol		
		_		_		_	0 7	· · ·	0 7	• /	0 ,	X	U ,	J ,				Haemolysis	- 11
												^	Х					Haptoglobin	н
													٨						
																		HbA1c	
									Χ									HBsAg	
																		HBDH	
																Χ		hCG	
			Χ									Χ						HDL-Cholesterol	
																		Homocysteine	
																		hsCRP	
												Χ						Icteric	
													Х					lgA	
													Χ					lgE	
Х																		IGF-1	
													Х					IgG	
													X					IgM	
													^					-	
				Χ														Inhibin A	
Х																		Insulin	
																		Interferon gamma (INF-Y)*	
																		Interleukin – 1 alpha (IL-1α)*	
																		Interleukin – 1 beta (IL-1β)*	
																		Interleukin – 10 (IL-10)*	
																		Interleukin – 2 (IL-2)*	
																		Interleukin – 4 (IL-4)*	
																		Interleukin – 6 (IL-6)	
																		Interleukin – 8 (IL-8)*	
												Χ						Iron	
													Χ					Kappa Light Chain (Free)	К
													Х					Kappa Light Chain (Total)	_ ^
																Χ		Ketones	
												Х				^		Lactate	
												^	Х					Lambda Light Chain (Free)	L
													X						
													^					Lambda Light Chain (Total)	
												Χ						LD (LDH)	
			Χ															LDL-Cholesterol	
																Χ		Leucocytes	
												Χ						Lipase	
			Χ															Lipoprotein (a)	
															Χ			Lithium	
																	Χ	Lorazepam	
																	Χ	LSD	
																		Luteinising Hormone (LH)	
												Χ						Magnesium	М
																	Х	MDMA	
																		Mean Cell Haemoglobin (MCH)	
																		Mean Cell Haemoglobin Concentration	
																		(MCHC)	
																		Mean Cell Volume (MCV)	
																		Mean Platelet Volume (MPV)	
																		Metanephrine	
																	Х	Methadone	
																	,\	Methaemoglobin (MetHb)	
															V				
															Χ			Methotrexate	

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

54

PUR

= Pilot st	ccredited udy ongoing The only parameters available on RQ9135/a	Ammonia / Ethanol	Anti-Mullerian Hormone (AMH) +	Anti-TSH Receptor +	Blood Gas	BNP +	Cardiac	Cardiac Plus	Cerebrospinal Fluid +	Coagulation	CO-Oximetry +	CYFRA 21-1 +	Cytokines +	ESR +	General Clinical Chemistry	HbA1c	Haematology	Human Urine	Immunoassay
М	Monocyte Chemoattractant Protein -1 (MCP-1)*												Х						
	Myoglobin						Χ	Χ											
N	NEFA														Χ				
	Nitrite																		
	Non-HDL Cholesterol														Χ				
	Norepinephrine																	Χ	
	Normetanephrine																	Χ	
	Norpropoxyphene																		
	Nortriptyline																		
	NTproBNP							Χ											
0	Oestradiol																		Χ
	Osmolality														Χ			Χ	
	Osteocalcin																		
	Oxalate																	Х	
	Oxazepam																		
	Oxygen Content (O2CT)										Χ								
	Oxygen Saturation (sO2 / Vol O2)										Χ								
	Oxyhaemoglobin (O2Hb / HbO2)										Χ								
Р	P24*																		
	PAPP-A																		
	Paracetamol (Acetaminophen)																		Χ
	pCO ₂				Х														
	pH				Χ														
	Phencyclidine																		
	Phenobarbital																		X
	Phenytoin														V			V	Χ
	Phosphate (Inorganic)														Χ			Х	
	Plasma Renin Activity									V									
	Plasminogen Plateletcrit (PCT)									Х							Х		
	Platelets (PLT)																X		
	pO ₂				Х												^		
	Potassium				X										Χ			Χ	
	Prealbumin (Transthyretin)														^				
	Primidone																		
	Procalcitonin																		
	Progesterone																		Х
	Prolactin																		Х
	Protein (Total)								Х						Х			Х	
	Protein C									Χ									
	Protein S									Χ									
	PSA (Free)																		Χ
	PSA (Total)														Х				Χ
	PT (Including INR)									Χ									
	PTH																		Χ
R	Red Blood Bell Count (RBC)																Х		
	Red Cell Distribution Width (RDW)																Х		
	Renin (Direct Concentration)																		
	Retinol Binding Protein																		
	Rheumatoid Factor																		
S	Salicylic Acid																		Χ

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

Immunoassay Speciality 1	Immunoassay Speciality 2	Immunosuppressant +	Lipid	Maternal Screening	Microbiology (Bacterial Idenitfication) +	Neonatal Bilirubin +	Serology (Anti-SARS-CoV-2) +	Serology (EBV) +	Serology (HIV / Hepatitis) +	Serology (Syphilis) +	Serology (ToRCH) +	Serum Indices +	Specific Proteins	Sweat Testing +	Therapeutic Drug	Urinalysis	Urine Toxicology +	
--------------------------	--------------------------	---------------------	-------	--------------------	---	----------------------	------------------------------	------------------	------------------------------	-----------------------	--------------------	-----------------	-------------------	-----------------	------------------	------------	--------------------	--

- + = Not accredited
- * = Pilot study ongoing

PURPLE = The only parameters available on RQ9135/a

Immunoassay	Immunoassa)	ddnsounwwl	Lipid	Maternal Scr	Microbiology	Neonatal Bili	Serology (An	Serology (EB	Serology (HIN	Serology (Sy	Serology (Tol	Serum Indice	Specific Prot	Sweat Testing	Therapeutic	Urinalysis	Urine Toxico		
																		Monocyte Chemoattractant Protein -1 (MCP-1)*	М
																		Myoglobin	
																		NEFA	N
																Χ		Nitrite	
																		Non-HDL Cholesterol	
																		Norepinephrine	
																		Normetanephrine	
																	Х	Norpropoxyphene	
																		Nortriptyline	Ī
																		NTproBNP	
																		Oestradiol	0
																		Osmolality	Ĭ
Х																		Osteocalcin	
																		Oxalate	
																	Χ		1
																		Oxygen Content (O2CT)	
																		Oxygen Saturation (sO2 / Vol O2)	
																		Oxygen Saturation (SO2 / Vol O2) Oxyhaemoglobin (O2Hb / HbO2)	.
									V									P24*	
				V					Χ										Р
				Χ														PAPP-A	
															Χ			Paracetamol (Acetaminophen)	
																		pCO ₂	
																Χ		рН	
																		Phencyclidine	
															Χ		Х	Phenobarbital	
															Χ			Phenytoin	
												Χ						Phosphate (Inorganic)	
	Х																	Plasma Renin Activity	
																		Plasminogen	
																		Plateletcrit (PCT)	
																		Platelets (PLT)	
																		pO_2	
																		Potassium	
													Χ					Prealbumin (Transthyretin)	
															Χ			Primidone	
Χ	Χ																	Procalcitonin	
																		Progesterone	Ī
																		Prolactin	Ī
												Χ				Χ		Protein (Total)	
																		Protein C	
																		Protein S	
																		PSA (Free)	
																		PSA (Total)	
																		PT (Including INR)	
Х																		PTH	
																		Red Blood Bell Count (RBC)	
																		Red Cell Distribution Width (RDW)	R
	V																		
	Х												V					Renin (Direct Concentration)	
													X					Retinol Binding Protein	
													Х		V			Rheumatoid Factor	
															Χ			Salicylic Acid	S

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

+ =

* = P

PURF

	ccredited udy ongoing		mone (AMH) +	+					+ p						hemistry				
RPLE = '	The only parameters available on RQ9135/a	Ammonia / Ethanol	Anti-Mullerian Hormone (AMH) +	Anti-TSH Receptor +	Blood Gas	BNP +	Cardiac	Cardiac Plus	Cerebrospinal Fluid	Coagulation	CO-Oximetry +	CYFRA 21-1 +	Cytokines +	ESR +	General Clinical Chemistry	HbA1c	Haematology	Human Urine	Immunoassay
S	Secobarbital																		
	SHBG																		Χ
	Sirolimus																		
	Sodium				Χ				Χ						Χ			Χ	
	Specific Gravity																		
	Strain Identification																		
	Syphilis																		
Т	T ₃ (Free)														Х				X
	T ₃ (Total)														Χ				Х
	T ₄ (Free)														X				X
	T ₄ (Total)														Χ				Х
	Tacrolimus																		
	Testosterone (Free)*																		X
	Testosterone (Total)																		X
	Theophylline																		X
	Thyroglobulin TIBC														V				Х
															Χ				
	Tobramycin Total hCG																		
	Transferrin																		
															Х				
	Triglycerides Troponin I						Х	Х							^				
							X	X											
	Troponin T TSH						^	^							Х				Χ
	TT									Х					^				^
	Tumour Necrosis Factor alpha (TNF-α)*												Χ						
U	UIBC														Χ				
	Unconjugated Oestriol																		
	Urea														Χ			Χ	
	Uric Acid														Χ			Χ	
	Urobilinogen																		
V	Valproic Acid																		Х
	Vancomycin																		Χ
	Vascular Endothelial Growth Factor (VEGF)*												Χ						
	Vitamin B12																		Χ
	VMA																	Χ	
W	Total White Blood Cell Count (WBC)																Χ		
Z	Zinc														Χ				

 $^{^{\}vartriangle}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

		Sweat Testing + Therapeutic Drug
		Urinalysis
	Χ	Urine Toxicology +
I		

- + = Not accredited
- $\star = Pilot study ongoing$

PURPLE = The only parameters available on RQ9135/a

X Secobarbital SHBG Sirolimus Sirolimus Sirolimus Sodium X X Specific Gravity Strain Identification Syphilis T, (free) T, (free) T, (free) T, (free) T, (free) T T, (free) T T T T, (free) T T T T T, (free) T T T T T T T T T	lm m	lmm	lm m	Lipic	Mat	Micr	Neo	Serc	Serc	Sero	Serc	Serc	Ser	Spec	Swe	The	Uri	Urin		
X																		Х	Secobarbital	S
X																			SHBG	
X			Х																Sirolimus	
X													Χ						Sodium	
																	Χ		Specific Gravity	
T T T T T T T T T T						Х													Strain Identification	
T T T T T T T T T T											Х								Syphilis	
T ₃ (Total) T ₄ (Free) T ₄ (Free)																			T ₃ (Free)	Т
X																				
X																			T, (Total)	
Testosterone (Total) X			Х																	
X																			Testosterone (Free)*	
X																			Testosterone (Total)	
Thyroglobulin TIBC Tobramycin X Tobramycin Total hCG Transferrin Transferrin Troponin I Troponin T Troponin T TSH TT Tumour Necrosis Factor alpha (TNF-α)* UIBC UIBC Urea X Urea X Urea X Urobilinogen X Valproic Acid X Valproic Acid Vancomycin Vascular Endothelial Growth Factor (VEGF)* VIMA Total White Blood Cell Count (WBC) W																Χ				
TIBC																				
X																				
X																Χ				
X					Х															
Troponin I Troponin T TSH TI Tumour Necrosis Factor alpha (TNF-α)* UIBC Unconjugated Oestriol Urea X Uric Acid X Urobilinogen X X Valproic Acid Y X Vancomycin Vascular Endothelial Growth Factor (VEGF)* Vitamin B12 VMA Total White Blood Cell Count (WBC)														Х					Transferrin	
Troponin I Troponin T TSH TI Tumour Necrosis Factor alpha (TNF-α)* UIBC Unconjugated Oestriol Urea X Uric Acid X Urobilinogen X X Valproic Acid Y X Vancomycin Vascular Endothelial Growth Factor (VEGF)* Vitamin B12 VMA Total White Blood Cell Count (WBC)				Х									Х						Triglycerides	
Troponin T TSH TIT Tumour Necrosis Factor alpha (TNF-α)* UIBC Urea VICA Acid VICA Aci																				
TSH TIT Tumour Necrosis Factor alpha (TNF-α)* UIBC Unconjugated Oestriol Vacua Vacua Valproic Acid X Valproic Acid X Vancomycin Vascular Endothelial Growth Factor (VEGF)* Vitamin B12 VMA Total White Blood Cell Count (WBC)																				
TI Tumour Necrosis Factor alpha (TNF-\alpha)* UIBC UIRC UIrea Uric Acid X Urobilinogen X Valproic Acid X Vancomycin Vascular Endothelial Growth Factor (VEGF)* Vitamin B12 VMA Total White Blood Cell Count (WBC)																				
UIBC																				
UIBC																			Tumour Necrosis Factor alpha (TNF-α)*	
X																				U
					Х														Unconjugated Oestriol	
X													Χ							
X Valproic Acid V X Vancomycin Vascular Endothelial Growth Factor (VEGF)* Vitamin B12 VMA Total White Blood Cell Count (WBC)																			Uric Acid	
X Valproic Acid V X Vancomycin Vascular Endothelial Growth Factor (VEGF)* Vitamin B12 VMA Total White Blood Cell Count (WBC)																	Х		Urobilinogen	
X Vancomycin Vascular Endothelial Growth Factor (VEGF)* Vitamin B12 VMA Total White Blood Cell Count (WBC) W																Χ			-	V
Vascular Endothelial Growth Factor (VEGF)* Vitamin B12 VMA Total White Blood Cell Count (WBC)																				
Vitamin B12 VMA Total White Blood Cell Count (WBC) W																				
VMA Total White Blood Cell Count (WBC) W																				
Total White Blood Cell Count (WBC) W																				
																				W
ZIIIC																			Zinc	Z

 $^{^{\}Delta}$ Pilot status only in certain programmes. Please check pages 42-46 for more information.

RANDOX QC PORTFOLIO

Our expertise in Quality Control have led to us creating market leading products that are tried and trusted by laboratory professionals. Our product portfolio offers high quality diagnostic solutions which offer reliable and rapid diagnosis and we believe that by providing laboratories with these tools, we can improve health worldwide.

ACUSERA - True third party controls offering complete test menu consolidation

Uniquely combining more than 100 analytes conveniently in a single control, laboratories can significantly reduce costs and consolidate without compromising on quality. As true third party controls, unbiased performance assessment with any instrument or method is guaranteed.

ACUSERA 24.7 - Online QC software with real-time peer group statistics

Designed for use with the Acusera range of third party controls, the Acusera 24.7 software will help you monitor and interpret your QC data. Access to an impressive range of features, including interactive charts, the automatic calculation of Measurement Uncertainty & Sigma Metrics and live peer group data generated from our extensive database of laboratory participants, ensures Acusera 24.7 is the most comprehensive package available.

ACUSERA VERIFY - Keep your instrument in check with calibration verification materials

Designed to challenge a larger section of an instruments reportable range and test if a system's calibration is still valid. Our linearity materials cover a wide range of testing including, CRP, RF, Lipids, Therapeutic Drugs, Esoterics and more. Designed with user convenience in mind, all our linearity sets are supplied in a liquid format and in varying levels. Our unique combination of analytes enables laboratories to reduce the number of individual products required while ultimately reducing costs and time.

MOLECULAR - IQC & EQA solutions for infectious disease testing

Our complete quality control solutions for molecular infectious disease testing comprise hundreds of characterised viral, bacterial and fungal targets. Covering a wide range of transplant associated diseases, respiratory infections, blood borne viruses, sexually transmitted infections and more, our Molecular IQC and EQA range covers the full laboratory portfolio. Both our product offering are manufactured using only the highest quality material and the availability of whole pathogen samples ensures the performance of the patient sample is mimicked throughout.

LT033 RIQAS Explained FEB24 indd 59 25/04/2024 09:29

CONTACT US

Contact us for more information on any of our products and services:

HEADQUARTERS

Randox Laboratories Ltd, 55 Diamond Road, Crumlin, County Antrim, BT29 4QY, United Kingdom

INTERNATIONAL OFFICES

AUSTRALIA

Randox (Australia) Pty Ltd. Tel: +61 (0) 2 9615 4640

CZECH REPUBLIC

Randox Laboratories S.R.O. Tel: +420 2 1115 1661

HONG KONG

Randox Laboratories Hong Kong Limited Tel: +852 3595 0515

POLAND

Randox Laboratories Polska Sp. z o.o. Tel: +48 22 862 1080

REPUBLIC OF IRELAND

Tel: +353 7495 22600

SOUTH KOREA

Randox Korea Tel: +82 (0) 31 478 3121

Randox Medical Equipments Trading LLC Tel: +971 55 474 9075

RRA7II

Randox Brasil Ltda. Tel: +55 11 5181-2024

FRANCE

Tel: +33 (0) 130 18 96 80

Tel: +39 06 9896 8954

PORTUGAL

Irlandox Laboratorios Quimica Analitica Ltda Tel: +351 22 589 8320

SLOVAKIA

Tel: +421 2 6381 3324

SPAIN

Laboratorios Randox S.L. Tel: +34 93 475 09 64

Randox Laboratories-US, Ltd. Tel: +1 304 728 2890

CHINA

Randox Laboratories Ltd Tel: +86 021 6288 6240

GERMANY

atories GmbH Tel: +49 (0) 215 1937 0611

INDIA

Randox Laboratories India Pvt Ltd. Tel: +91.80.2802.5000

PUERTO RICO

Clinical Diagnostics of Puerto Rico, LLC Tel: +1787 701 7000

SOUTH AFRICA

Randox Laboratories SA (Pty) Ltd. Tel: +27 (0) 11 312 3590

SWITZERLAND

Randox Laboratories Ltd. (Switzerland) Tel: +41 41 810 48 89

VIETNAM

Randox Laboratories Ltd. Vietnam Tel: +84 (0) 8 3911 0904

For technical support contact: mail@riqas.com

Whilst every attempt is made to ensure that information is accurate and up-to-date, some information is subject to change. Please contact marketing@randox.com for current details.

25/04/2024 09:29

LT033 FEB24

Copyright © 2023 Randox Laboratories Ltd. All rights Reserved. VAT number: GB 151 6827 08. In EU VAT number: XI 151 6827 08. Information correct at time of print. Product availability may vary from country to country. Some products may be for Research Use Only. For more information on product application and availability, please contact your local Randox Representative.

25/04/2024 09:29 LT033 RIQAS Explained FEB24.indd 61